2019-2020学年人教A版数学必修5:2.3等差数列的前n项和(第1课时)学案(含解析)
《2019-2020学年人教A版数学必修5:2.3等差数列的前n项和(第1课时)学案(含解析)》由会员分享,可在线阅读,更多相关《2019-2020学年人教A版数学必修5:2.3等差数列的前n项和(第1课时)学案(含解析)(3页珍藏版)》请在七七文库上搜索。
1、第二章 数列2.3 等差数列的前 n 项和2.3 等差数列的前 n 项和 (第 1 课时)学习目标掌握等差数列前 n 项和的公式,并能运用公式解决简单的问题.了解等差数列前 n 项和的定义,了解倒序相加的原理,理解等差数列前 n 项和公式推导的过程,记忆公式的两种形式;用方程思想认识等差数列前 n 项和的公式,利用公式求 Sn,a1,d,n;等差数列通项公式与前 n 项和的公式共涉及五个量,已知其中三个量可求另两个量;会利用等差数列通项公式与前 n 项和的公式研究 Sn 的最值.合作学习一、设计问题,创设情境1.一个堆放铅笔的 V 形架的最下面一层放一支铅笔 ,往上每一层都比它下面一层多放一支
2、,最上面一层放 100 支.这个 V 形架上共放着多少支铅笔 ?问题就是 这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.这实际上是一个求等差数列前 100 项和的问题,高斯算法的高明之处在于他发现这 100 个数可以分为 50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,每组数的和均相等,都等于 101,50 个 101 就等于 5050.高斯算法将加法运算转化为乘法运算,迅速准确的得到了结果.我们要求一般的等差数列的前几项和,高斯算法对我们有何启发?二、信息交流,揭示规律2.公式推导设等差数列a n的首项为 a1,公差为 d,Sn=
3、a1+a2+a3+an=?,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.思路一:运用基本量思想,将各项用 a1和 d 表示,得Sn=a1+(a1+d)+(a1+2d)+(a1+3d)+a1+(n-2)d+a1+(n-1)d,有以下等式 a1+a1+(n-1)d=(a1+d)+a1+(n-2)d=(a1+2d)+a1+(n-3)d=,问题是一共有多少个 ,似乎与 n 的奇偶有关.这个思路似乎进行不下去了. 思路二:上面的等式其实就是 a1+an=a2+an-1=a3+an-2=,为回避个数问题,做一个改写Sn=a1+a2+a3+an-2+an-1+an,Sn=an+an-1+an-2+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 数学 必修 2.3 等差数列 课时 学案含 解析
链接地址:https://www.77wenku.com/p-76014.html