2019年人教B版数学选修1-1课件:2.3.2 抛物线的几何性质(第2课时)
《2019年人教B版数学选修1-1课件:2.3.2 抛物线的几何性质(第2课时)》由会员分享,可在线阅读,更多相关《2019年人教B版数学选修1-1课件:2.3.2 抛物线的几何性质(第2课时)(51页珍藏版)》请在七七文库上搜索。
1、第2课时 抛物线的几何性质的应用,第二章 2.3.2 抛物线的几何性质,学习目标 1.掌握抛物线的几何特性. 2.学会解决直线与抛物线相关的综合问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 直线与抛物线的位置关系,思考1 直线与抛物线有哪几种位置关系?,答案 三种:相离、相切、相交.,思考2 若直线与抛物线只有一个交点,直线与抛物线一定相切吗?,答案 不一定,当平行或重合于抛物线的对称轴的直线与抛物线相交时,也只有一个交点.,梳理 (1)直线与抛物线的位置关系与公共点个数.,有两个或一个,有且只有一个,无,(2)直线ykxb与抛物线y22px(p0)的交点个数决定于关于x的
2、方程k2x22(kbp)xb20的解的个数.当k0时,若0,则直线与抛物线有 个不同的公共点;当0时,直线与抛物线有 个公共点;当0)的通径长为2a.( ),题型探究,类型一 直线与抛物线的位置关系,解答,例1 已知直线l:yk(x1)与抛物线C:y24x,问:k为何值时,直线l与抛物线C有两个交点,一个交点,无交点?,得k2x2(2k24)xk20,(2k24)24k416(1k2). (1)若直线与抛物线有两个交点, 则k20且0, 即k20且16(1k2)0, 解得k(1,0)(0,1). 所以当k(1,0)(0,1)时, 直线l和抛物线C有两个交点.,(2)若直线与抛物线有一个交点,
3、则k20或当k20时,0, 解得k0或k1. 所以当k0或k1时,直线l和抛物线C有一个交点. (3)若直线与抛物线无交点, 则k20且1或k1或k0. 设弦的两端点P1(x1,y1),P2(x2,y2),,P1P2的中点为(4,1),,所求直线方程为y13(x4), 即3xy110, y1y22,y1y222,,方法二 设P1(x1,y1),P2(x2,y2).,所求直线的斜率k3, 所求直线方程为y13(x4), 即3xy110.,y1y22,y1y222,,类型三 抛物线性质的综合应用,例3 已知点A,B是抛物线y22px(p0)上的两点,且OAOB. (1)求两点的横坐标之积和纵坐标之
4、积;,解答,命题角度1 抛物线中的定点(定值)问题,解 设点A,B的坐标分别为(x1,y1),(x2,y2),,因为OAOB,所以kOAkOB1, 所以x1x2y1y20.,因为y10,y20, 所以y1y24p2, 所以x1x24p2.,(2)求证:直线AB过定点.,证明,反思与感悟 在直线和抛物线的综合题中,经常遇到求定值、过定点问题,解决这类问题的方法很多,如斜率法、方程法、向量法、参数法等,解决这类问题的关键是代换和转化.,跟踪训练3 如图,过抛物线y2x上一点A(4,2)作倾斜角互补的两条直线AB,AC交抛物线于B,C两点,求证:直线BC的斜率是定值.,证明,证明 方法一 设AB的斜
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年人教 数学 选修 课件 2.3
链接地址:https://www.77wenku.com/p-77126.html