北师大版高中数学选修1-1课件:第三章 变化率与导数 章末复习
《北师大版高中数学选修1-1课件:第三章 变化率与导数 章末复习》由会员分享,可在线阅读,更多相关《北师大版高中数学选修1-1课件:第三章 变化率与导数 章末复习(32页珍藏版)》请在七七文库上搜索。
1、章末复习,第三章 变化率与导数,学习目标 1.会求函数在某点处的导数. 2.理解导数的几何意义,会求曲线上某点处的切线方程. 3.能够运用导数公式和求导法则进行求导运算,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.函数yf(x)在xx0处的导数 (1)函数yf(x)在xx0处的 称为函数yf(x)在xx0处的导数, 记作 ,即f(x0) . (2)函数yf(x)在点x0处的导数f(x0)是曲线yf(x)在点P(x0,f(x0)处_,在点P处的切线方程为 .,瞬时变化率,f(x0),切,线的斜率,yf(x0)f(x0)(xx0),2.导函数 如果一个函数f(x)在区间(a,b)上的每一
2、点x处都有导数,导数值记为,f(x) ,则f(x)是关于x的函数,称f(x)为f(x)的导函数,通常也简称为 .,f(x),导数,3.导数公式表,x1,cos x,sin x,axln a,ex,4.导数的四则运算法则 设两个函数f(x),g(x)可导,则,f(x)g(x),f(x)g(x),f(x)g(x)f(x)g(x),思考辨析 判断正误 1.f(x0)与(f(x0)表示的意义相同.( ),题型探究,类型一 导数几何意义的应用,解 ysin x,ycos x,,解答,反思与感悟 利用导数求切线方程时关键是找到切点,若切点未知需设出.常见的类型有两种,一类是求“在某点处的切线方程”,则此点
3、一定为切点,易求斜率进而写出直线方程即可得;另一类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q(x1,y1),由 f(x1)和y1f(x1)求出x1,y1的值,转化为第一种类型.,跟踪训练1 设函数f(x) x3ax29x1(a0),直线l是曲线yf(x)的一条切线,当l的斜率最小时,直线l与直线10xy6平行. (1)求a的值;,解答,解 f(x)x22ax9(xa)2a29, f(x)mina29, 由题意知a2910,a1或1(舍去). 故a1.,(2)求f(x)在x3处的切线方程.,解答,解 由(1)得a1. f(x)x22x9, 则kf(3)6,f(3)10.
4、 f(x)在x3处的切线方程为y106(x3), 即6xy280.,类型二 导数的计算,例2 求下列函数的导数: (1)yx2ln xax;,解答,解 y(x2ln xax) (x2)(ln x)(ax),解答,解答,反思与感悟 有关导数的计算应注意以下两点 (1)熟练掌握公式:熟练掌握简单函数的导数公式及函数的和、差、积、商的导数运算法则. (2)注意灵活化简:当函数式比较复杂时,要将函数形式进行化简,化简的原则是将函数拆分成简单函数的四则运算形式,由于在导数的四则运算公式中,和与差的求导法则较为简洁,因此化简时尽可能转化为和、差的形式,尽量少用积、商求导.,跟踪训练2 求下列函数的导数:,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 高中数学 选修 课件 第三 变化 导数 复习
链接地址:https://www.77wenku.com/p-77218.html