人教版九年级数学上册24.2.2切线的判定与性质(第2课时)课件(共29张PPT)
《人教版九年级数学上册24.2.2切线的判定与性质(第2课时)课件(共29张PPT)》由会员分享,可在线阅读,更多相关《人教版九年级数学上册24.2.2切线的判定与性质(第2课时)课件(共29张PPT)(29页珍藏版)》请在七七文库上搜索。
1、24.2 直线和圆的位置关系,第2课时 切线的判定与性质,导入新课,情境引入,转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?,都是沿切线方向飞出的.,生活中常看到切线的实例,如何判断一条直线是否为切线呢?学完这节课,你就都会明白.,B,C,问题:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?,观察:(1) 圆心O到直线AB的距离和圆的半径有什么数量关系? (2)二者位置有什么关系?为什么?,O,讲授新课,经过半径的外端并且垂直于这条半径的直线是圆的切线.,OA为O的半径,BC OA于A,BC为O的切线,B,C,O,要点归纳,判一判:下列各直线是不是圆的切线?
2、如果不是,请说明为什么?,(1)不是,因为没有垂直.,(2),(3)不是,因为没有经过半径的外端点A.,判断一条直线是一个圆的切线有三个方法:,1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;,2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;,3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.,要点归纳,例1:如图,ABC=45,直线AB是O上的直径,点A,且AB=AC. 求证:AC是O的切线.,解析:直线AC经过半径的一端,因此只要证OA垂直于AB即可.,证明:AB=AC,ABC45,,ACBABC45.,BAC=180-ABC-ACB=
3、90.,AB是O的直径,, AC是O的切线.,例2 已知:直线AB经过O上的点C,并且OA=OB,CA=CB.求证:直线AB是O的切线.,O,B,A,C,分析:由于AB过O上的点C,所以连接OC,只要证明ABOC即可.,证明:连接OC(如图). OAOB,CACB, OC是等腰三角形OAB底边AB上的中线. ABOC. OC是O的半径, AB是O的切线.,例3 如图,ABC 中,AB AC ,O 是BC的中点,O 与AB 相切于E.求证:AC 是O 的切线,B,O,C,E,A,分析:根据切线的判定定理,要证明AC是O的切线,只要证明由点O向AC所作的垂线段OF是O的半径就可以了,而OE是O的半
4、径,因此只需要证明OF=OE.,证明:连接OE ,OA, 过O 作OF AC.,O 与AB 相切于E , OE AB.,又ABC 中,AB AC ,O 是BC 的中点,AO 平分BAC,,F,B,O,C,E,A,OE OF.,OE 是O 半径,OF OE,OF AC.,AC 是O 的切线,又OE AB ,OFAC.,如图,已知直线AB经过O上的点C,并且OAOB,CACB 求证:直线AB是O的切线.,C,B,A,O,如图,OAOB=5,AB8, O的直径为6. 求证:直线AB是O的切线.,B,A,O,对比思考,?,作垂直,连接,方法归纳,(1) 有交点,连半径,证垂直; (2) 无交点,作垂直
5、,证半径.,证切线时辅助线的添加方法,有切线时常用辅助线添加方法,见切点,连半径,得垂直.,切线的其他重要结论,(1)经过圆心且垂直于切线的直线必经过切点;,(2)经过切点且垂直于切线的直线必经过圆心.,要点归纳,思考:如图,如果直线l是O 的切线,点A为切点,那么OA与l垂直吗?,直线l是O 的切线,A是切点,,直线l OA.,小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.,(1)假设AB与CD不垂直,过点O作一条直径垂直于CD,垂足为M,(2)则OMOA,即圆心到直线CD的距离小于O的半径,因此,CD与O相交.这与已知条件“直线与O相切”相矛盾.,(3)所以AB与CD垂直.,证法1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 24.2
链接地址:https://www.77wenku.com/p-8103.html