三年高考(2017-2019)理数真题分项版解析——专题08 平面解析几何(解答题) (原卷版)
《三年高考(2017-2019)理数真题分项版解析——专题08 平面解析几何(解答题) (原卷版)》由会员分享,可在线阅读,更多相关《三年高考(2017-2019)理数真题分项版解析——专题08 平面解析几何(解答题) (原卷版)(12页珍藏版)》请在七七文库上搜索。
1、专题 08 平面解析几何(解答题)1 【2019 年高考全国卷理数 】已知抛物线 C:y 2=3x 的焦点为 F,斜率为32的直线 l 与 C 的交点为A,B ,与 x 轴的交点为 P(1)若|AF|+|BF|=4 ,求 l 的方程;(2)若 3,求| AB|2【2019 年高考全国卷理数】已知点 A(2,0) ,B(2,0) ,动点 M(x,y)满足直线 AM 与 BM 的斜率之积为 .记 M 的轨迹为曲线 C.1(1)求 C 的方程,并说明 C 是什么曲线;(2)过坐标原点的直线交 C 于 P,Q 两点,点 P 在第一象限,PEx 轴,垂足为 E,连结 QE 并延长交 C 于点 G.(i)
2、证明: 是直角三角形;(ii)求 面积的最大值.P3【2019 年高考全国卷理数】已知曲线 C:y= ,D 为直线 y= 上的动点,过 D 作 C 的两条切线,2x12切点分别为 A,B.(1)证明:直线 AB 过定点:(2)若以 E(0, )为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求四边形 ADBE 的面积.524【2019 年高考北京卷理数】已知抛物线 C:x 2=2py 经过点( 2,1 )(1)求抛物线 C 的方程及其准线方程;(2)设 O 为原点,过抛物线 C 的焦点作斜率不为 0 的直线 l 交抛物线 C 于两点 M,N ,直线 y=1 分别交直线 OM, ON
3、于点 A 和点 B求证:以 AB 为直径的圆经过 y 轴上的两个定点5【2019 年高考天津卷理数】设椭圆 的左焦点为 ,上顶点为 已知椭圆的短21(0)xyabFB轴长为 4,离心率为 5(1)求椭圆的方程;(2)设点 在椭圆上,且异于椭圆的上、下顶点,点 为直线 与 轴的交点,点 在 轴的负PMPBxNy半轴上若 ( 为原点),且 ,求直线 的斜率|ONFOPN6【2019 年高考江苏卷】如图,在平面直角坐标系 xOy 中,椭圆 C: 的焦点为21(0)xyabF1(1、0),F 2(1,0)过 F2 作 x 轴的垂线 l,在 x 轴的上方,l 与圆 F2: 交于224xya点 A,与椭圆
4、 C 交于点 D.连结 AF1 并延长交圆 F2 于点 B,连结 BF2 交椭圆 C 于点 E,连结 DF1已知 DF1= 52(1)求椭圆 C 的标准方程;(2)求点 E 的坐标7【2019 年高考浙江卷】如图,已知点 为抛物线 的焦点,过点 F 的直线交抛物(10)F,2(0)ypx线于 A、 B 两点,点 C 在抛物线上,使得 的重心 G 在 x 轴上,直线 AC 交 x 轴于点 Q,且 QABC在点 F 的右侧记 的面积分别为 ,GQ 12,S(1)求 p 的值及抛物线的准线方程;(2)求 的最小值及此时点 G 的坐标12S8【2017 年高考全国 III 卷理数 】已知抛物线 C:y
5、 2=2x,过点(2,0)的直线 l 交 C 于 A,B 两点,圆 M 是以线段 AB 为直径的圆 .(1)证明:坐标原点 O 在圆 M 上;(2)设圆 M 过点 ,求直线 l 与圆 M 的方程.4,2P9 【2017 年高考江苏卷】如图,在平面直角坐标系 中,椭圆 的左、右焦点xOy2:1(0)xyEab分别为 , ,离心率为 ,两准线之间的距离为 8点 在椭圆 上,且位于第一象限,过点1F21P作直线 的垂线 ,过点 作直线 的垂线 P1l2F2P2l(1)求椭圆 的标准方程;E(2)若直线 , 的交点 在椭圆 上,求点 的坐标1l2QE(注:椭圆 的准线方程: )2(0)xyab2axc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三年 高考 2017 2019 理数真题分项版 解析 专题 08 平面 解析几何 解答 题原卷版
链接地址:https://www.77wenku.com/p-82691.html