2018年中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析
《2018年中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析》由会员分享,可在线阅读,更多相关《2018年中考数学真题分类汇编第一期专题26图形的相似与位似试题含解析(64页珍藏版)》请在七七文库上搜索。
1、图形的相似与位似一、选择题1 (2018山东枣庄3 分)如图,在 RtABC 中,ACB=90,CDAB,垂足为 D,AF平分CAB,交 CD于点 E,交 CB于点 F若 AC=3,AB=5,则 CE的长为( )A B C D【分析】根据三角形的内角和定理得出CAF+CFA=90,FAD+AED=90,根据角平分线和对顶角相等得出CEF=CFE,即可得出 EC=FC,再利用相似三角形的判定与性质得出答案【解答】解:过点 F作 FGAB 于点 G,ACB=90,CDAB,CDA=90,CAF+CFA=90,FAD+AED=90,AF 平分CAB,CAF=FAD,CFA=AED=CEF
2、,CE=CF,AF 平分CAB,ACF=AGF=90,FC=FG,B=B,FGB=ACB=90,BFGBAC, = ,AC=3,AB=5,ACB=90,BC=4, = ,FC=FG, = ,2解得:FC= ,即 CE的长为 故选:A【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出CEF=CFE2 (2018 山东滨州 3分)在平面直角坐标系中,线段 AB两个端点的坐标分别为A(6,8) ,B(10,2) ,若以原点 O为位似中心,在第一象限内将线段 AB缩短为原来的后得到线段 CD,则点 A的对应点 C的坐标
3、为( )A (5,1) B (4,3) C (3,4) D (1,5)【分析】利用位似图形的性质,结合两图形的位似比进而得出 C点坐标【解答】解:以原点 O为位似中心,在第一象限内将线段 AB缩小为原来的 后得到线段CD,端点 C的横坐标和纵坐标都变为 A点的横坐标和纵坐标的一半,又A(6,8) ,端点 C的坐标为(3,4) 故选:C【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键3 (2018江苏扬州3 分)如图,点 A在线段 BD上,在 BD的同侧做等腰 RtABC 和等腰RtADE,CD 与 BE、AE 分别交于点 P,M对于下列结论:
4、BAECAD;MPMD=MAME;2CB 2=CPCM其中正确的是( )3A B C D【分析】 (1)由等腰 RtABC 和等腰 RtADE 三边份数关系可证;(2)通过等积式倒推可知,证明PAMEMD 即可;(3)2CB 2转化为 AC2,证明ACPMCA,问题可证【解答】解:由已知:AC= AB,AD= AEBAC=EADBAE=CADBAECAD所以正确BAECADBEA=CDAPME=AMDPMEAMDMPMD=MAME所以正确BEA=CDAPME=AMDP、E、D、A 四点共圆APD=EAD=90CAE=180BACEAD=90CAPCMAAC 2=CPCMAC= AB
5、2CB 2=CPCM所以正确故选:A【点评】本题考查了相似三角形的性质和判断在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案4 (2018山东临沂3 分)如图利用标杆 BE测量建筑物的高度已知标杆 BE高41.2m,测得 AB=1.6mBC=12.4m则建筑物 CD的高是( )A9.3m B10.5m C12.4m D14m【分析】先证明ABEACD,则利用相似三角形的性质得 = ,然后利用比例性质求出 CD即可【解答】解:EBCD,ABEACD, = ,即 = ,CD=10.5(米)故选:B【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体
6、的高度利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度5(2018山东潍坊3 分)在平面直角坐标系中,点 P(m,n)是线段 AB上一点,以原点O为位似中心把AOB 放大到原来的两倍,则点 P的对应点的坐标为( )A (2m,2n) B (2m,2n)或(2m,2n)C ( m, n) D ( m, n)或( m, n)【分析】根据位似变换的性质计算即可【解答】解:点 P(m,n)是线段 AB上一点,以原点 O为位似中心把AOB 放大到原来的两倍,则点 P的对应点的坐标为(m2,n2
7、)或(m(2) ,n(2) ) ,即(2m,2n)或(2m,2n) ,故选:B【点评】本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为 k,那么位似图形对应点的坐标的比等于 k或k6.(2018湖南省永州市4 分)如图,在ABC 中,点 D是边 AB上的一点,ADC=ACB,AD=2,BD=6,则边 AC的长为( )5A2 B4 C6 D8【分析】只要证明ADCACB,可得 = ,即 AC2=ADAB,由此即可解决问题;【解答】解:A=A,ADC=ACB,ADCACB, = ,AC 2=ADAB=28=16,AC0,AC=4,故选
8、:B【点评】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题,属于中考常考题型7 (2018四川宜宾3 分)如图,将ABC 沿 BC边上的中线 AD平移到A'B'C'的位置,已知ABC 的面积为 9,阴影部分三角形的面积为 4若 AA'=1,则 A'D等于( )A2 B3 C D【考点】Q2:平移的性质【分析】由 SABC =9、S AEF =4且 AD为 BC边的中线知 SADE = SAEF =2,S ABD = SABC =,根据DAEDAB 知( ) 2= ,据此求解可得【解答】解:如图,6S ABC =9、S
9、AEF =4,且 AD为 BC边的中线,S ADE = SAEF =2,S ABD = SABC = ,将ABC 沿 BC边上的中线 AD平移得到A'B'C',AEAB,DAEDAB,则( ) 2= ,即( ) 2= ,解得 AD=2 或 AD= (舍) ,故选:A【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点8(2018四川自贡4 分)如图,在ABC 中,点 D、E 分别是 AB、AC 的中点,若ADE的面积为 4,则ABC 的面积为( )A8 B12 C14 D16【分析】直接利用三角形中
10、位线定理得出 DEBC,DE= BC,再利用相似三角形的判定与性质得出答案【解答】解:在ABC 中,点 D、E 分别是 AB、AC 的中点,DEBC,DE= BC,ADEABC,7 = , = ,ADE 的面积为 4,ABC 的面积为:16,故选:D【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出ADEABC 是解题关键9(2018台湾分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为 6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?( )A只
11、使用苹果B只使用芭乐C使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论【解答】解:苹果、芭乐、柳丁三种水果,且其颗数比为 9:7:6,设苹果为 9x颗,芭乐 7x颗,铆钉 6x颗(x 是正整数) ,小柔榨果汁时没有使用柳丁,设小柔榨完果汁后,苹果 a颗,芭乐 b颗,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为 6:3:4, , ,a=9x,b= x,苹果的用量为 9xa=9x9x=0,芭乐的
12、用量为 7xb=7x x= x0,她榨果汁时,只用了芭乐,故选:B【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键810 (2018台湾分)如图,ABC、FGH 中,D、E 两点分别在 AB、AC 上,F 点在 DE上,G、H 两点在 BC上,且 DEBC,FGAB,FHAC,若 BG:GH:HC=4:6:5,则ADE与FGH 的面积比为何?( )A2:1 B3:2 C5:2 D9:4【分析】只要证明ADEFGH,可得 =( ) 2,由此即可解决问题;【解答】解:BG:GH:HC=4:6:5,可以假设 BG=4k,GH=6
13、k,HC=5k,DEBC,FGAB,FHAC,四边形 BGFD是平行四边形,四边形 EFHC是平行四边形,DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,FGH=B=ADE,FHG=C=AED,ADEFGH, =( ) 2=( ) 2= 故选:D【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型11 (2018湖北荆门3 分)如图,四边形 ABCD为平行四边形,E、F 为 CD边的两个三等分点,连接 AF、BE 交于点 G,则 SEFG :S ABG =( )A1:3 B3:1 C1:9 D9:1【分
14、析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:四边形 ABCD是平行四边形,CD=AB,CDAB,DE=EF=FC,EF:AB=1:3,9EFGBAG, =( ) 2= ,故选:C【点评】本题考查平行四边形的性质、相似三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型12 (2018湖北恩施3 分)如图所示,在正方形 ABCD中,G 为 CD边中点,连接 AG并延长交 BC边的延长线于 E点,对角线 BD交 AG于 F点已知 FG=2,则线段 AE的长度为( )A6 B8 C10 D12【分析】根据正方形的性质可得出 ABCD,进而
15、可得出ABFGDF,根据相似三角形的性质可得出 = =2,结合 FG=2可求出 AF、AG 的长度,由 CGAB、AB=2CG 可得出 CG为EAB 的中位线,再利用三角形中位线的性质可求出 AE的长度,此题得解【解答】解:四边形 ABCD为正方形,AB=CD,ABCD,ABF=GDF,BAF=DGF,ABFGDF, = =2,AF=2GF=4,AG=6CGAB,AB=2CG,CG 为EAB 的中位线,AE=2AG=12故选:D10【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出 AF的长度是解题的关键13. (2018浙江临安3
16、分)如图,小正方形的边长均为 1,则下列图中的三角形(阴影部分)与ABC 相似的是( )A B C D【考点】相似三角形的判定,【分析】根据正方形的性质求出ACB,根据相似三角形的判定定理判断即可【解答】解:由正方形的性质可知,ACB=18045=135,A、C、D 图形中的钝角都不等于 135,由勾股定理得,BC= ,AC=2,对应的图形 B中的边长分别为 1和 , = ,图 B中的三角形(阴影部分)与ABC 相似,故选:B【点评】本题考查的是相似三角形的判定,掌 握两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键14(2018浙江临安3 分)如图,在ABC 中,DE
17、BC,DE 分别与 AB,AC 相交于点D,E,若 AD=4,DB=2,则 DE:BC 的值为( )11A B C D【考点】相似三角形的判定和相似三角形的性质【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可【解答】解:DEBC,ADEABC, = = = 故选:A【点评】本题考查了相似三角形的判定和相似三角形的性质,对应边不要搞错15(2018重庆(A)4 分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为 5cm, 6和 9c,另一个三角形的最短边长为 2.5cm,则它的最长边为A. 3B. 4m
18、C. 4D. 5c【考点】相似三角形的性质【解析】利用相似三角形三边对应成比例解出即可。【解答】解:设所求最长边为 xcm两三角形相似, 2.59x,. 4.5故选 C【点评】此题主要考查相似三角形的性质相似三角形的三边对应成比例,该题属于中考当中的基础题。16(2018广东3 分)在ABC 中,点 D、E 分别为边 AB、AC 的中点,则ADE 与ABC的面积之比为( )A B C D【分析】由点 D、E 分别为边 AB、AC 的中点,可得出 DE为ABC 的中位线,进而可得出DEBC 及ADEABC,再利用相似三角形的性质即可求出ADE 与ABC 的面积之比【解答】解:点 D、
19、E 分别为边 AB、AC 的中点,DE 为ABC 的中位线,12DEBC,ADEABC, =( ) 2= 故选:C【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出 DEBC 是解题的关键17(2018 年四川省内江市)已知ABC 与A 1B1C1相似,且相似比为 1:3,则ABC 与A 1B1C1的面积比为( )A1:1 B1:3 C1:6 D1:9【考点】S7:相似三角形的性质【分析】利用相似三角形面积之比等于相似比的平方,求出即可【解答】解:已知ABC 与A 1B1C1相似,且相似比为 1:3,则ABC 与A 1B1C1的面积比为 1:9
20、,故选:D【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键二.填空题1(2018 年四川省南充市)如图,在ABC 中,DEBC,BF 平分ABC,交 DE的延长线于点 F若 AD=1,BD=2,BC=4,则 EF= 13【考点】S9:相似三角形的判定与性质;KJ:等腰三角形的判定与性质【分析】由 DEBC 可得出ADEABC,根据相似三角形的性质和平行线的性质解答即可【解答】解:DEBC,F=FBC,BF 平分ABC,DBF=FBC,F=DBF,DB=DF,DEBC,ADEABC, ,即 ,解得:DE= ,DF=DB=2,EF=DFDE=2 ,故答案为:
21、【点评】此题考查相似三角形的判定和性质,关键是由 DEBC 可得出ADEABC2 (2018四川省绵阳市)如图,在ABC 中,AC=3,BC=4,若 AC,BC 边上的中线 BE,AD垂直相交于点 O,则 AB=_.【答案】【考点】勾股定理,三角形中位线定理,相似三角形的判定与性质 【解析】 【解答】解:连接 DE,14AD、BE 为三角形中线,DEAB,DE= AB,DOEAOB, = = = ,设 OD=x,OE=y,OA=2x,OB=2y,在 RtBOD 中,x2+4y 2=4 ,在 RtAOE 中,4x2+y2= ,+ 得:5x2+5y2= ,x
22、2+y2= ,在 Rt AOB中,AB 2=4x2+4y2=4(x 2+y 2)=4 ,即 AB= .故答案为: .【分析】连接 DE,根据三角形中位线性质得 DEAB,DE= AB,从而得DOEAOB,根据相似三角形的性质可得 = = = ;设 OD=x,OE=y,从而可知OA=2x,OB=2y,根据勾股定理可得 x2+4y2=4,4x 2+y2= ,两式相加可得 x2+y2= ,在RtAOB 中,由股股定理可得 AB= .3(2018广东广州3 分)如图 9,CE 是平行四边形 ABCD的边 AB的垂直平分线,垂足为15点 O,CE 与 DA的延长线交于点 E,连接 AC,BE,DO,DO
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年中 数学 分类 汇编 一期 专题 26 图形 相似 试题 解析
链接地址:https://www.77wenku.com/p-85093.html