2018年中考数学真题分类汇编第一期专题11函数与一次函数试题含解析
《2018年中考数学真题分类汇编第一期专题11函数与一次函数试题含解析》由会员分享,可在线阅读,更多相关《2018年中考数学真题分类汇编第一期专题11函数与一次函数试题含解析(43页珍藏版)》请在七七文库上搜索。
1、1函数与一次函数一、选择题1. (2018山东滨州3 分)如果规定x表示不大于 x的最大整数,例如2.3=2,那么函数 y=xx的图象为( )A BC D【分析】根据定义可将函数进行化简【解答】解:当1x0,x=1,y=x+1当 0x1 时
2、,x=0,y=x当 1x2 时,x=1,y=x1故选:A【点评】本题考查函数的图象,解题的关键是正确理解x的定义,然后对函数进行化简,本题属于中等题型2 (2018山东枣庄3 分)如图,直线 l是一次函数 y=kx+b的图象,若点 A(3,m)在直线 l上,则 m的值是( )A5 B C D7【分析】待定系数法求出直线解析式,再将点 A代入求解可得【解答】解:将(2,0) 、 (0,1)代入,得:2解得: ,y= x+1,将点 A(3,m)代入,得: +1=m,即 m= ,故选:C【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键3. (2018湖南
3、省常德3 分)若一次函数 y=(k2)x+1 的函数值 y随 x的增大而增大,则( )Ak2 Bk2 Ck0 Dk0【分析】根据一次函数的性质,可得答案【解答】解:由题意,得k20,解得 k2,故选:B【点评】本题考查了一次函数的性质,y=kx+b,当 k0 时,函数值 y随 x的增大而增大4. (2018湖南省永州市4 分)函数 y= 中自变量 x的取值范围是( )Ax3 Bx3 Cx3 Dx=3【分析】根据分式的意义,分母不等于 0,可以求出 x的范围【解答】解:根据题意得:x30,解得:x3故选:C【点评】考查了函数自变量的范围,注意:函数自变量的范围一般从三个方
4、面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为 0;3(3)当函数表达式是二次根式时,被开方数非负5 (2018株洲市3 分)已知一系列直线分别与直线 相交于一系列点 ,设 的横坐标为 ,则对于式子 ,下列一定正确的是( )A. 大于 1 B. 大于 0 C. 小于1 D. 小于 0【答案】B【解析】分析:利用待定系数法求出 xi,x j即可解决问题;详解:由题意 xi=- ,x j=- ,式子 0,故选:
5、B点睛:本题考查一次函数图象上点的坐标特征,待定系数法等知识,解题的关键是灵活运用所学知识解决问题6. (2018 年江苏省泰州市3 分)如图,平面直角坐标系 xOy中,点 A的坐标为(9,6),ABy 轴,垂足为 B,点 P从原点 O出发向 x轴正方向运动,同时,点 Q从点 A出发向点 B运动,当点 Q到达点 B时,点 P、Q 同时停止运动,若点 P与点 Q的速度之比为 1:2,则下列说法正确的是( )A线段 PQ始终经过点(2,3)B线段 PQ始终经过点(3,2)C线段 PQ始终经过点(2,2)D线段 PQ不可能始终经过某一定点【分析】当 OP=t时,点 P的坐标为(t,0),
6、点 Q的坐标为(92t,6)设直线 PQ的解析式为 y=kx+b(k0),利用待定系数法求出 PQ的解析式即可判断;【解答】解:当 OP=t时,点 P的坐标为(t,0),点 Q的坐标为(92t,6)设直线 PQ的解析式为 y=kx+b(k0),将 P(t,0)、Q(92t,6)代入 y=kx+b,4,解得: ,直线 PQ的解析式为 y= x+ x=3 时,y=2,直线 PQ始终经过(3,2),故选:B【点评】本题考查一次函数图象上的点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型7. (2018 年江苏省宿迁)函数 中,自变量 x的取值范围是(
7、) 。 A. x0 B. x1 C. x1 D. x1【答案】D 【考点】分式有意义的条件 【解析】 【解答】解:依题可得:x-10,x1.故答案为:D.【分析】根据分式有意义的条件:分母不为 0,计算即可得出答案.8.(2018 年江苏省宿迁)在平面直角坐标系中,过点(1,2)作直线 l,若直线 l与两坐标轴围成的三角形面积为 4,则满足条件的直线 l的条数是( ) 。 &nbs
8、p; A.5 B.4 C.3 D.2【答案】C 【考点】三角形的面积,一次函数图像与坐标轴交点问题 【解析】 【解答】解:设直线 l解析式为:y=kx+b,设 l与 x轴交于点 A(- ,0) ,与 y轴交于点 B(0,b), (2-k)2=8 ,k2-12k+4=0 或(k+2)2=0,k= 或 k=-2.满足条件的直线有 3条.故答案为:C.【分析】设直线 l解析式为:y=kx+b,设 l与 x轴交于点 A(- ,0
9、) ,与 y轴交于点5B(0,b),依题可得关于 k和 b的二元一次方程组,代入消元即可得出 k的值,从而得出直线条数.1. (2018四川自贡4 分)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是( )A数形结合 B类比 C演绎 D公理化【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想故选:A【点评】本题考查了函
10、数图象,解题的关键是掌握初中数学常用的数学思想9. (2018四川自贡4 分)已知圆锥的侧面积是 8cm 2,若圆锥底面半径为 R(cm) ,母线长为 l(cm) ,则 R关于 l的函数图象大致是( )A B C D【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可【解答】解:由题意得, lR=8,则 R= ,故选:A【点评】本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键10. (2018广东深圳3 分)把函数 y=x向上平移 3个单位,下列在该平移后的直线上的点是( ) &
11、nbsp; A. B. C. D. 【答案】D 【考点】一次函数图象与几何变换 【解析】 【解答】解:函数 y=x向上平移 3个单位,y=x+3,6当 x=2时,y=5,即(2,5)在平移后的直线上,故答案为:D.【分析】根据平移的性质得平移后的函数解析式,再将点的横坐标代入得出 y值,一一判断即可得出答案.11. (2018广西桂林3 分)如图,在平面直角坐标系中,M、N、C 三点的坐标分别为( ,1) , (3,1) , (3,0)
12、 ,点 A为线段 MN上的一个动点,连接 AC,过点 A作 交y轴于点 B,当点 A从 M运动到 N时,点 B随之运动,设点 B的坐标为(0, b) ,则 b的取值范围是( )A. B. C. D. 【答案】A【解析】分析:分别求出当点 A与点 M、N 重合时直线 AC的解析式,由 ABAC 可得直线AB的解析式,从而求出 b的值,最终可确定 b的取值范围.详解:当点 A与点 N重合时,MNAB,MN 是直线 AB的一部分,N(3,1)此时 b=1;当点 A与点 M重合时,设直线 AC
13、的解析式为 y=k1x+m,由于 AC经过点 A、C 两点,故可得 ,解得:k 1= ,设直线 AB的解析式为 y=k2x+b, ABAC, , k 2= 7故直线 AB的解析式为 y= x+b,把( ,1)代入 y= x+b得,b=- . b的取值范围是 .故选 A.点睛:此题考查一次函数基本性质,待定系数求解析式,简单的几何关系.12(2018 年四川省内江市)已知函数 y= ,则自变量 x的取值范围是( )A1x1 Bx1 且 x1 Cx1 Dx1【考点】E4:函数自变量的取值范围【分析】根据二次根式的性质和分式的意义,被开方数大于或等于 0,分母不等于 0,就可
14、以求解【解答】解:根据题意得: ,解得:x1 且 x1故选:B【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为 0;(3)当函数表达式是二次根式时,被开方数为非负数13(2018 年四川省内江市)如图,在物理课上,小明用弹簧秤将铁块 A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则如图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度 x(单位:cm)之间的函数关系的大致图是( )A B C D【考点】E6:函数的图象【分析】根据在铁块开始
15、露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基8米德原理和称重法可知 y的变化,注意铁块露出水面前读数 y不变,离开水面后 y不变,即可得出答案【解答】解:露出水面前排开水的体积不变,受到的浮力不变,根据称重法可知 y不变;铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理可知受到的浮力变小,根据称重法可知 y变大;铁块完全露出水面后一定高度,不再受浮力的作用,弹簧秤的读数为铁块的重力,故 y不变故选:C【点评】本题考查了函数的图象,用到的知识点是函数值随时间的变化,注意分析 y随 x的变化而变化的趋势,而不一定要通过求解析式来解决14(2018 年四川省南充市
16、)直线 y=2x向下平移 2个单位长度得到的直线是( )Ay=2(x+2) By=2(x2) Cy=2x2 Dy=2x+2【考点】F9:一次函数图象与几何变换【分析】据一次函数图象与几何变换得到直线 y=2x向下平移 2个单位得到的函数解析式为y=2x2【解答】解:直线 y=2x向下平移 2个单位得到的函数解析式为 y=2x2故选:C【点评】本题考查了一次函数图象与几何变换:一次函数 y=kx(k0)的图象为直线,当直线平移时 k不变,当向上平移 m个单位,则平移后直线的解析式为 y=kx+m15. (2018台湾分)已知坐标平面上,一次函数 y=3x+a的图形通过点(0,4) ,
17、其中 a为一数,求 a的值为何?( )A12 B4 C4 D12【分析】利用待定系数法即可解决问题【解答】解:次函数 y=3x+a的图形通过点(0,4) ,4=03+a,a=4,故选:B【点评】本题考查一次函数的应用、待定系数法等知识,熟练掌握待定系数法是解题的关9键,属于中考基础题16 (2018湖北荆门3 分)在函数 y= 中,自变量 x的取值范围是( )Ax1 Bx1 Cx1 Dx1【分析】根据被开方数大于等于 0,分母不等于 0列式求解即可【解答】解:根据题意得 x10,1x0,解得 x1故选:B【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于
18、0,被开方数大于等于 0列式计算即可,是基础题,比较简单17.(2018湖北黄冈3 分)函数 y= 1x中自变量 x的取值范围是Ax-1 且 x1 B.x-1 C. x1 D. -1x1【考点】函数自变量的取值范围。【分析】自变量 x的取值范围必须使函数有意义, x中 x+10;分式作为除式,则x-10.综上即可得解。【解答】解:依题意,得 x+10x-10x-1 且 x1.故选 A.【点评】本题考查了函数自变量的取值范围。要使二次根式有意义,必须使被开方数为非负数;分式的分母
19、不能为零。二.填空题1. (2018四川省眉山市 1分 ) 已知点 A(x 1 , y1)、B(x 2 , y2)在直线 y=kx+b上,且直线经过第一、二、四象限,当 x1x 2时,y 1与 y2的大小关系为_. 【答案】y 1>y2 【考点】一次函数的性质,比较一次函数值的大小 【解析】 【解答】解:y=kx+b 图像经过第一、二、四象限,k0,y 随 x增大而减少,又x 1x 2 , y 1>y2.10故答案为:y 1>y2.【分析】一次函数图像经过第一、二、四象限,根据一次函数性质
20、可知 k0,所以 y随 x增大而减少,从而得出答案.2(2018浙江衢州4 分)星期天,小明上午 8:00 从家里出发,骑车到图书馆去借书,再骑车回到家他离家的距离 y(千米)与时间 t(分钟)的关系如图所示,则上午 8:45小明离家的距离是 1.5 千米【考点】一次函数的应用【分析】首先设当 40t60 时,距离 y(千米)与时间 t(分钟)的函数关系为y=kt+b,然后再把(40,2) (60,0)代入可得关于 k|B的方程组,解出 k、b 的值,进而可得函数解析式,再把 t=45代入即可【解答】解:设当 40t60 时,距离 y(千米)与时间 t(分钟)的函数关系为y=kt+b图象经过(
21、40,2) (60,0) , ,解得: ,y 与 t的函数关系式为 y= x+6,当 t=45时,y= 45+6=1.5 故答案为:1.5【点评】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式3. (2018 重庆(A)4 分) ,AB两地相距的路程为 240千米,甲、乙两车沿同一线路从A地出发到 B地,分别以一定的速度匀速行驶,甲车先出发 40分钟后,乙车才出发。途中乙车发生故障,修车耗时 20分钟,随后,乙车车速比发生故障前减少了 10千米/小时(仍保持匀速前行) ,甲、乙两车同时到达 地。甲、乙两车相距的路程 y(千米)与甲车行驶时间 x(小时)之间的关系
22、如图所示,求乙车修好时,甲车距 B地还有千米。11xyO千 千21030【考点】一次函数的实际应用【解析】 甲车先行 40分钟( 40263h) ,所行路程为 30千米,因此甲车的速度为3045/2kmh。乙车的初始速度为 5160/乙 乙Vkmh,因此乙车故障后速度为 6-10/k。 12122 2305()457439 ttt tkm【点评】 本题考查了一次函数的实际应用,难度较高。4 (2018湖北恩施3 分)函数 y= 的自变量 x的取值范围是 x 且 x3 【分析】根据被开方数大于等于 0,分母不等于 0列式求解即可【解答】解:根据题意得 2x+10,x30,
23、解得 x 且 x3故答案为:x 且 x3【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于 0,被开方数大于等于 0列式计算即可,是基础题,比较简单5. (2018新疆生产建设兵团5 分)如图,已知抛物线 y1=x 2+4x和直线 y2=2x我们规定:当 x取任意一个值时,x 对应的函数值分别为 y1和 y2,若 y1y 2,取 y1和 y2中较小值为 M;若 y1=y2,记 M=y1=y2当 x2 时,M=y 2;当 x0 时,M 随 x的增大而增大;使得 M大于4的 x的值不存在;若 M=2,则 x=1上述结论正确的是 (填写所有正确结论的序号) 12【分析】观察函数图象,可
24、知:当 x2 时,抛物线 y1=x 2+4x在直线 y2=2x的下方,进而可得出当 x2 时,M=y 1,结论错误;观察函数图象,可知:当 x0 时,抛物线 y1=x 2+4x在直线 y2=2x的下方,进而可得出当 x0 时,M=y 1,再利用二次函数的性质可得出 M随 x的增大而增大,结论正确;利用配方法可找出抛物线 y1=x 2+4x的最大值,由此可得出:使得 M大于 4的 x的值不存在,结论正确;利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当 M=2时的 x值,由此可得出:若 M=2,则 x=1或 2+ ,结论错误此题得解【解答】解:当 x2 时,抛物线 y1=x 2+
25、4x在直线 y2=2x的下方,当 x2 时,M=y 1,结论错误;当 x0 时,抛物线 y1=x 2+4x在直线 y2=2x的下方,当 x0 时,M=y 1,M 随 x的增大而增大,结论正确;y 1=x 2+4x=(x2) 2+4,M 的最大值为 4,使得 M大于 4的 x的值不存在,结论正确;当 M=y1=2时,有x 2+4x=2,解得:x 1=2 (舍去) ,x 2=2+ ;当 M=y2=2时,有 2x=2,解得:x=1若 M=2,则 x=1或 2+ ,结论错误综上所述:正确的结论有故答案为:【点评】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年中 数学 分类 汇编 一期 专题 11 函数 一次 试题 解析
链接地址:https://www.77wenku.com/p-85120.html