2019年中考数学第二轮专题《二次函数与几何图形》综合复习试卷含解析
《2019年中考数学第二轮专题《二次函数与几何图形》综合复习试卷含解析》由会员分享,可在线阅读,更多相关《2019年中考数学第二轮专题《二次函数与几何图形》综合复习试卷含解析(89页珍藏版)》请在七七文库上搜索。
1、函数与几何综合 1如图,抛物线C1:yx22x与抛物线C2:yax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA2OB(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,MOC面积最大?并求出最大面积2如图,抛物线yx2+bx+c与直线yx+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC已知A(0,3),C(3,0)(1)求抛物线的解析式;(2)在抛物线对称轴
2、l上找一点M,使|MBMC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQPA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由3如图,已知抛物线yax2+bx1与x轴的交点为A(1,0),B(2,0),且与y轴交于C点(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),MEx轴,MFy轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由(3)已知点P是直线yx+1上的动点,点Q为抛物线上的动点
3、,当以C、C1、P、Q为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标4已知抛物线yax2+bx+3经过点A(1,0)和点B(3,0),与y轴交于点C,点P为第二象限内抛物线上的动点(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;(2)如图1,连接OP交BC于点D,当SCPD:SBPD1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,1),点G为x轴负半轴上的一点,OGE15,连接PE,若PEG2OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由5如图,抛物线yax2+bx+c经过点A(2,5),与
4、x轴相交于B(1,0),C(3,0)两点(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将BCD沿直线BD翻折得到BCD,若点C恰好落在抛物线的对称轴上,求点C和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当CPQ为等边三角形时,求直线BP的函数表达式6如图,已知直线AB与抛物线C:yax2+2x+c相交于点A(1,0)和点B(2,3)两点(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的
5、坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y的距离?若存在,求出定点F的坐标;若不存在,请说明理由7已知抛物线yx2+bx+c的对称轴为直线x1,其图象与x轴相交于A,B两点,与y轴相交于点C(0,3)(1)求b,c的值;(2)直线1与x轴相交于点P如图1,若ly轴,且与线段AC及抛物线分别相交于点E,F,点C关于直线x1的对称点为点D,求四边形CEDF面积的最大值;如图2,若直线1与线段BC相交于点Q,当PCQCAP时,求直线1的表达式8如图,在平面直角坐标系xOy中,已知二次函数yax2+bx+c的图象经过点A(2,0),C(0,6),其对
6、称轴为直线x2(1)求该二次函数的解析式;(2)若直线yx+m将AOC的面积分成相等的两部分,求m的值;(3)点B是该二次函数图象与x轴的另一个交点,点D是直线x2上位于x轴下方的动点,点E是第四象限内该二次函数图象上的动点,且位于直线x2右侧若以点E为直角顶点的BED与AOC相似,求点E的坐标9在平面直角坐标系中,将二次函数yax2(a0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA1,经过点A的一次函数ykx+b(k0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,ABD的面积为5(1)求抛物线和一次函数的
7、解析式;(2)抛物线上的动点E在一次函数的图象下方,求ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值10如图,直线yx+4与x轴,y轴分别交于A,B两点,过A,B两点的抛物线yax2+bx+c与x轴交于点C(1,0)(1)求抛物线的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EFBC,交AB于点F,当BEF的面积是时,求点E的坐标;(3)在(2)的结论下,将BEF绕点F旋转180得BEF,试判断点E是否在抛物线上,并说明理由11如图,顶点为P(3,3)的二次函数图象与x轴交于点A(6,0),点B
8、在该图象上,OB交其对称轴l于点M,点M、N关于点P对称,连接BN、ON(1)求该二次函数的关系式(2)若点B在对称轴l右侧的二次函数图象上运动,请解答下列问题:连接OP,当OPMN时,请判断NOB的形状,并求出此时点B的坐标求证:BNMONM12两条抛物线C1:y13x26x1与C2:y2x2mx+n的顶点相同(1)求抛物线C2的解析式;(2)点A是抛物线C2在第四象限内图象上的一动点,过点A作APx轴,P为垂足,求AP+OP的最大值;(3)设抛物线C2的顶点为点C,点B的坐标为(1,4),问在C2的对称轴上是否存在点Q,使线段QB绕点Q顺时针旋转90得到线段QB,且点B恰好落在抛物线C2上
9、?若存在,求出点Q的坐标;若不存在,请说明理由13如图,已知抛物线ya(x+2)(x6)与x轴相交于A、B两点,与y轴交于C点,且tanCAB设抛物线的顶点为M,对称轴交x轴于点N(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQPC当点P在线段MN(含端点)上运动时,求n的变化范围;在的条件下,当n取最大值时,求点P到线段CQ的距离;在的条件下,当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围14如图,抛物线yax2+bx+c与x轴交于点A(1,0),点B(3,0),且OBOC(1)求抛物线的解析式;(2)点
10、P在抛物线上,且POBACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E求DE的最大值;点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形15如图1,在平面直角坐标系中,抛物线yx2+bx+c经过点A(5,0)和点B(1,0)(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PEx轴于点E,PGy轴,交抛物线于点G,过点G作GFx轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作D
11、MNDBA,MN交线段AD于点N,是否存在这样点M,使得DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由16如图,在平面直角坐标系xOy中,已知抛物线yax22x+c与直线ykx+b都经过A(0,3)、B(3,0)两点,该抛物线的顶点为C(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当PAB面积最大时,求点P的坐标,并求PAB面积的最大值17如图,抛物线yx2
12、+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:ykx+n与y轴交于点C,与抛物线yx2+bx+c的另一个交点为D,已知A(1,0),D(5,6),P点为抛物线yx2+bx+c上一动点(不与A、D重合)(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PEx轴交直线l于点E,作PFy轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由18如图1,已知抛物线yx2+bx+c过点A(1,0),B(3,0)(1)求抛
13、物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(CAO+CDO)4时,求点D的坐标;(3)如图2抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,BMP和EMN的面积分别为m、n,求mn的最大值19如图,抛物线yax2+bx5(a0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为yx+n求抛物线的解析式点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动当其中一个点到达终点时,另一点也停止运动设运动时间为t秒,求t为何值时,PBE的面积最大并求出最大
14、值过点A作AMBC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标20如图,抛物线yx2+bx+c过点A(3,2),且与直线yx+交于B、C两点,点B的坐标为(4,m)(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DEx轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使AQM45?若存在,求点Q的坐标;若不存在,请说明理由21如图,抛物线yax2+bx+c的图象过点A(1,0)、B(3
15、,0)、C(0,3)(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得PAC的周长最小,若存在,请求出点P的坐标及PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得SPAMSPAC?若存在,请求出点M的坐标;若不存在,请说明理由22已知二次函数yax2bx+c且ab,若一次函数ykx+4与二次函数的图象交于点A(2,0)(1)写出一次函数的解析式,并求出二次函数与x轴交点坐标;(2)当ac时,求证:直线ykx+4与抛物线yax2bx+c一定还有另一个异于点A的交点;(3)当cac+3时,求出直线ykx+4与抛物线
16、yax2bx+c的另一个交点B的坐标;记抛物线顶点为M,抛物线对称轴与直线ykx+4的交点为N,设SSAMNSBMN,写出S关于a的函数,并判断S是否有最大值?如果有,求出最大值;如果没有,请说明理由23如图,在平面直角坐标系中,已知抛物线yax2+bx+2(a0)与x轴交于A(1,0),B(3,0)两点,与y轴交于点C,连接BC(1)求该抛物线的解析式,并写出它的对称轴;(2)点D为抛物线对称轴上一点,连接CD、BD,若DCBCBD,求点D的坐标;(3)已知F(1,1),若E(x,y)是抛物线上一个动点(其中1x2),连接CE、CF、EF,求CEF面积的最大值及此时点E的坐标(4)若点N为抛
17、物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由24如图,直线yx+3与x轴、y轴分别交于B、C两点,抛物线yx2+bx+c经过点B、C,与x轴另一交点为A,顶点为D(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;(3)在抛物线的对称轴上是否存在一点P,使得APBOCB?若存在,求出P点坐标;若不存在,请说明理由25已知,如图,抛物线yax2+bx+c(a0)的顶点为M(1,9),经过抛物线上的两点A(3,7)和B(3,m)的直线交抛物线的对称轴于
18、点C(1)求抛物线的解析式和直线AB的解析式(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得SDAC2SDCM?若存在,求出点D的坐标;若不存在,请说明理由(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标26如图,抛物线yax2+bx2(a0)与x轴交于A(3,0),B(1,0)两点,与y轴交于点C,直线yx与该抛物线交于E,F两点(1)求抛物线的解析式(2)P是直线EF下方抛物线上的一个动点,作PHEF于点H,求PH的最大值(3)以点C为圆心,1为半径作圆,C上是否存在点M,使得BCM是以CM为直
19、角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由27如图,已知二次函数yx2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标28二次函数yax2+bx+2的图象交x轴于点(1,0),B(4,0)两点,交y轴于点C动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MNx轴交直线BC于点N
20、,交抛物线于点D,连接AC,设运动的时间为t秒(1)求二次函数yax2+bx+2的表达式;(2)连接BD,当t时,求DNB的面积;(3)在直线MN上存在一点P,当PBC是以BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t时,在直线MN上存在一点Q,使得AQC+OAC90,求点Q的坐标29如图,抛物线yax2+bx+4交x轴于A(3,0),B(4,0)两点,与y轴交于点C,连接AC,BC点P是第一象限内抛物线上的一个动点,点P的横坐标为m(1)求此抛物线的表达式;(2)过点P作PMx轴,垂足为点M,PM交BC于点Q试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三
21、角形是等腰三角形若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PNBC,垂足为点N请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?30如图,已知抛物线yax2+bx+c经过点A(3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,直线l是该抛物线的对称轴,点F是抛物线的顶点(1)求出该二次函数的表达式及点D的坐标;(2)若RtAOC沿x轴向右平移,使其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到RtA1O1F,求此时RtA1O1F与矩形OCDE重叠部分图形的面积;(3)若Rt
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数与几何图形 2019 年中 数学 二轮 专题 二次 函数 几何图形 综合 复习 试卷 解析
链接地址:https://www.77wenku.com/p-89344.html