专题2.15 超越方程反解难巧妙构造变简单-2020届高考数学压轴题讲义(解答题)(解析版)
《专题2.15 超越方程反解难巧妙构造变简单-2020届高考数学压轴题讲义(解答题)(解析版)》由会员分享,可在线阅读,更多相关《专题2.15 超越方程反解难巧妙构造变简单-2020届高考数学压轴题讲义(解答题)(解析版)(22页珍藏版)》请在七七文库上搜索。
1、【题型综述】导数研究超越方程超越方程是包含超越函数的方程,也就是方程中有无法用自变数的多项式或开方表示的函数,与超越方程相对的是代数方程超越方程的求解无法利用代数几何来进行大部分的超越方程求解没有一般的公式,也很难求得解析解在探求诸如,方程的根的问题时,我们利用导数这一工具和数形结合的数学思想就可以很好的解决此类题的一般解题步骤是:1、构造函数,并求其定义域2、求导数,得单调区间和极值点3、画出函数草图4、数形结合,挖掘隐含条件,确定函数图象与轴的交点情况求解【典例指引】例1已知函数在处取得极小值(1)求实数的值;(2)设,其导函数为,若的图象交轴于两点且,设线段的中点为,试问是否为的根?说明
2、理由【思路引导】(1)先求导数,再根据,解得,最后列表验证(2)即研究是否成立,因为,利用,得,所以=0,转化为其中,最后利用导数研究函数单调性,确定方程解的情况(2)由(1)知函数函数图象与轴交于两个不同的点,( ),两式相减得学*科网 下解即令,即令,又,在上是増函数,则,从而知,故,即不成立故不是的根学*科网例2设函数(1)当时,求函数的单调区间;来源:Zxxk.Com(2)令,其图象上任意一点处切线的斜率恒成立,求实数的取值范围(3)当时,方程在区间内有唯一实数解,求实数的取值范围【思路引导】(1)先求导数然后在函数的定义域内解不等式和的区间为单调增区间, 的区间为单调减区间;(2)先
3、构造函数再由以其图象上任意一点为切点的切线的斜率恒成立,知导函数恒成立,再转化为求解;(3)先把握有唯一实数解,转化为有唯一实数解,再利用单调函数求解来源:Z.xx.k.Com【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究方程的根、不等式的恒成立和导数的几何意义,属于难题利用导数研究函数的单调性的步骤:确定函数的定义域;对求导;令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间例3已知函数()(1)讨论的单调性;(2)若关于的不等式的解集中有且只有两个整数,求实数的取值范围【思路引导】(1)求出,分两种情况讨论,分别令 得增区间,令得减区间;(2) ,令,利
4、用导数研究其单调性,结合零点定理可得结果试题解析:(1),当时,在上单调递减,在单调递增;当时,在上单调递增,在单调递减;(2)依题意, ,令,则,学*科网令,则,即在上单调递增又,存在唯一的,使得当, 在单调递增;当, 在单调递减,且当时,又, ,学*科网故要使不等式解集中有且只有两个整数,的取值范围应为【新题展示】1【2019山西祁县中学上学期期末】已知函数,若(1)求实数的值;(2)若关于的方程有实数解,求实数的取值范围【思路引导】(1)求出函数的导数,得到关于a的方程,解出即可;(2)得到xlnxk,令g(x)xlnx,根据函数的单调性求出k的范围即可【解析】所以当时,即的值域为 所以
5、使方程有实数解的的取值范围2【2019浙江台州上学期期末】设函数,R()求函数在处的切线方程;()若对任意的实数,不等式恒成立,求实数的最大值; ()设,若对任意的实数,关于的方程有且只有两个不同的实根,求实数的取值范围【思路引导】()求出函数在处的导数后可得切线方程()参变分离后求函数的最小值可得的最大值()因为,故无零根,参变分离后考虑的图像与直线总有两个不同的交点,从而得到实数的取值范围【解析】(),. 且,所以在处的切线方程为. 所以 . (其中) 所以的最大值为. ()当时,即时,则,即在,单调递增,且当时,的取值范围为;当时,的取值范围为.此时对任意的实数,原方程恒有且只有两个不同
6、的解. ()当时,有两个非负根,所以在,单调递增,单调递减,所以当时有4个交点,或有3个交点,均与题意不合,舍去. ()当时,则有两个异号的零点,不妨设,则在,单调递增;在,单调递减.当时,的取值范围为,当时,的取值范围为,所以当时,对任意的实数,原方程恒有且只有两个不同的解.所以有,得.由,得,即.所以,.故 .所以. 所以当或时,原方程对任意实数均有且只有两个解.3【2019浙江杭州高级中学上学期期中】已知函数.(1)若关于的方程在内有两个不同的实数根,求实数的取值范围.(2)求证:当时,.【思路引导】(1)关于的方程在内有两个不同的实数根等价于,x与y=a有两个不同的交点;(2)要证当时
7、,即证【解析】(2)证明:,由得在上单调递增,又,根据零点存在定理可知,存在,使得当时,f(x)在上单调递减;当时,f(x)在上单调递增;故.由,得到,即,故,其中,令,由,得到在上单调递减,故,即,综上:有当时,.【同步训练】1已知函数(),且的导数为()若是定义域内的增函数,求实数的取值范围;()若方程有3个不同的实数根,求实数的取值范围【思路引导】()只需,即恒成立,求出即可得结果;()原方程等价于,研究函数的单调性,结合图象可得结果 令,解得或列表得:100增极大值减来源:学|科|网极小值增由表可知当时, 取得极大值;当时, 取得极小值又当时,此时学*科网因此当时,;当时,;当时, ,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-89903.html