专题3.14 探究图形之性质代数运算是利器-2020届高考数学压轴题讲义(解答题)(解析版)
《专题3.14 探究图形之性质代数运算是利器-2020届高考数学压轴题讲义(解答题)(解析版)》由会员分享,可在线阅读,更多相关《专题3.14 探究图形之性质代数运算是利器-2020届高考数学压轴题讲义(解答题)(解析版)(35页珍藏版)》请在七七文库上搜索。
1、【题型综述】探究图形之性质问题解题策略:(1)“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素某性质图形存在,用向量或平面几何知识,转化直线与圆锥曲线交点坐标的函数式,利用设而不求思想,列出关于待定系数的方程组,若方程组有实数解,则某性质图形存在存在;否则,元素某性质图形存在不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【典例指引】类型一 面积计算例1 【2016高考上海理数】(本题满分14)有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走。于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点
2、的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图(1) 求菜地内的分界线的方程(2) 菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为。设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值所求的矩形面积为,而所求的五边形面积为矩形面积与“经验值”之差的绝对值为,而五边形面积与“经验值”之差的绝对值为,所以五边形面积更接近于面积的“经验值”学*科网类型二 四边形形状探究例2. 【2015高考新课标2,理20】已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为()证明:直线的斜率
3、与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由 解得,因为,所以当的斜率为或时,四边形为平行四边形学*科网类型三 探究角是否相等例3【2015高考北京,理19】已知椭圆:的离心率为,点和点都在椭圆上,直线交轴于点()求椭圆的方程,并求点的坐标(用,表示);()设为原点,点与点关于轴对称,直线交轴于点问:轴上是否存在点,使得?若存在,求点的坐标;若不存在,说明理由 ),则,存在点使得.学*科网类型四 探究两直线的位置关系例4.【2017课标3,文20】在直角坐标系xOy中,曲线与x轴交于A,B两点,点C的坐标为.当m变化时,解答下
4、列问题:(1)能否出现ACBC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.【扩展链接】1.给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角;2.给出,等于已知是的平分线;3.在平行四边形中,给出,等于已知是菱形;4.在平行四边形中,给出,等于已知是矩形;5.已知抛物线方程为,定点M,直线过点M交抛物线于A,B两点,则有 ;【新题展示】1【2019四川凉山二诊】椭圆长轴右端点为,上顶点为,为椭圆中心,为椭圆的右焦点,且,离心率为(1)求椭圆的标准方程;(2)直线交椭圆于、两点,判断是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,
5、请说明理由【思路引导】(1)由条件布列关于a,b的方程组,即可得到椭圆的标准方程;(2)由为的垂心可知,利用韦达定理表示此条件即可得到结果【解析】(1)设椭圆的方程为,半焦距为则、由,即,又,解得,椭圆的方程为(2)为的垂心,又,设直线:,将直线方程代入,得,且又,即由韦达定理得:解之得:或(舍去)来源:Z_xx_k.Com存在直线:使为的垂心2【2019山东潍坊一模】如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,连接延长至点,使得,点的轨迹记为曲线(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,试问在曲线上是否存在点,使得四边形为平行四边形,若
6、存在,求出直线方程;若不存在,说明理由【思路引导】(1)设,则,且,通过,转化求解即可(2)设M(x1,y1),N(x2,y2),由题意知直线的斜率存在且不为零,设直线的方程为,代入椭圆方程整理得关于x的一元二次方程,假设存在点Q,满足题意,则其充要条件为,则点Q的坐标为(x1+x2,y1+y2)由此利用韦达定理结合点Q在曲线上,得到关于k的方程求解即可【解析】(1)设,则,由题意知,所以为中点,由中点坐标公式得,即,又点在圆:上,故满足,得(2)由题意知直线的斜率存在且不为零,设直线的方程为,因为,故,即 ,联立,消去得:,设, ,因为为平行四边形,故,点在椭圆上,故,整理得,将代入,得,该
7、方程无解,故这样的直线不存在3【2019山东淄博3月模拟】已知点A,B的坐标分别为(2,0),(2,0)三角形ABM的两条边AM,BM所在直线的斜率之积是()求点M的轨迹方程;()设直线AM方程为,直线l方程为x2,直线AM交l于P,点P,Q关于x轴对称,直线MQ与x轴相交于点D若APD面积为2,求m的值【思路引导】(I)设出点的坐标,利用斜率乘积为建立方程,化简后求得点的轨迹方程(II)联立两条直线的方程求得点的坐标,进而求得点的坐标,将直线的方程和的轨迹方程联立,求得点的坐标,进而求得直线的方程,从而求得点的坐标,利用三角形的面积列方程,解方程求得的值【解析】()设点M的坐标为(x,y),
8、因为点A的坐标是(-2,0),所以,直线AM的斜率同理,直线BM的斜率由已知又化简,得点M的轨迹方程()解:直线AM的方程为x=my-2(m0),与直线l的方程x=2联立,可得点,故将x=my-2与联立,消去x,整理得,解得y=0,或来源:Z,xx,k.Com由题设,可得点由,可得直线MQ的方程为,令y=0,解得,故所以所以APD的面积为:又因为APD的面积为,故,整理得,解得,所以4【2019福建龙岩质检】已知椭圆的两焦点为、,抛物线:()的焦点为,为等腰直角三角形()求的值;()已知过点的直线与抛物线交于两点,又过作抛物线的切线,使得,问这样的直线是否存在?若存在,求出直线的方程;若不存在
9、,说明理由【思路引导】()先写出、的坐标,利用为等腰直角三角形,求得p即可()依题意,直线l的斜率必存在,设直线l的方程为yk(x+2),可得切线l1,l2的斜率分别为,x1x24再将直线与抛物线联立,结合韦达定理解得k即可【解析】()椭圆,两焦点为,为等腰直角三角形, ()过点的直线与抛物线交于两点,的斜率必存在,设直线的方程为, 由得,或 抛物线方程得为所以切线的斜率分别为, 当时,即 又,解得合题意,所以存在直线的方程是,即5【2019广西桂林市,贺州市,崇左市3月联合调研】已知抛物线,过点的直线交抛物线于、两点,设为坐标原点,且(1)求的值;(2)若,的面积成等比数列,求直线的方程【思
10、路引导】(1)利用 ,从而可得结果;(2)由(1)知点为抛物线的焦点,可设直线的方程为,由 ,成等比数列,可得,即利用韦达定理可得,解方程即可得结果【解析】(1)据题直线,斜率均存在,且, 故(2)由(1)知点为抛物线的焦点,据题意,直线的斜率存在且不为0,故可设直线的方程为由 设,则有, 若,的面积成等比数列,则,成等比数列,即:,则解得,或,均满足故直线的方程为或6【2019河北石家庄3月质检】已知椭圆()的离心率为,且经过点(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由【思路引导】(1)
11、由题得a,b,c的方程组求解即可(2)直线与直线恰关于轴对称,等价于的斜率互为相反数,即,整理设直线的方程为,与椭圆联立,将韦达定理代入整理即可【解析】(1)由题意可得,又, 解得,所以,椭圆的方程为 (2)存在定点,满足直线与直线恰关于轴对称设直线的方程为,与椭圆联立,整理得,设,定点(依题意则由韦达定理可得, 直线与直线恰关于轴对称,等价于的斜率互为相反数 所以,即得 又,所以,整理得,从而可得, 即,所以,当,即时,直线与直线恰关于轴对称成立 特别地,当直线为轴时,也符合题意 综上所述,存在轴上的定点,满足直线与直线恰关于轴对称7【2019山东临沂2月质检】已知抛物线E:上一点M到焦点F
12、的距离为5来源:Zxxk.Com(1)求抛物线E的方程;(2)直线与圆C:相切且与抛物线E相交于A,B两点,若AOB的面积为4(O为坐标原点),求直线的方程【思路引导】(1)由抛物线的定义求出p的值,即可得出抛物线的方程;(2)设直线l的方程为xmy+n,设点A(x1,y1)、B(x2,y2),根据直线l与圆C相切得出m与n所满足的第一个关系式,将直线l的方程联立,列出韦达定理,计算出|AB|以及原点O到直线l的距离d,然后利用三角形的面积公式计算出AOB的面积,得出m与n所满足的第二个关系式,然后将两个关系式联立,求出m和n的值,即可得出直线l的方程【解析】(1)由抛物线的定义知,所以,p2
13、,因此,抛物线E的方程为y24x;(2)由题意知,直线l与y轴不垂直,设直线l的方程为xmy+n直线l与圆C相切,又圆C的圆心为(2,0),所以,4m2n24n,设点A(x1,y1)、B(x2,y2),由,消去x得,y24my4n0,由韦达定理得y1+y24m,y1y24n则,又原点O到直线l的距离为,(m2+n)n24,又4m2n24n,解得n2当n2时,m21不成立;当n2时,m23,经检验,所求直线方程为,即8【2019湖北十堰模拟】已知椭圆过点(1)求椭圆的方程,并求其离心率;(2)过点作轴的垂线,设点为第四象限内一点且在椭圆上(点不在直线上),点关于的对称点为,直线与交于另一点设为原
14、点,判断直线与直线的位置关系,并说明理由【思路引导】(1)将P点代入椭圆方程,可得a的值,结合离心率的公式可得离心率的值;(2)设直线,设点的坐标为,分别求出,根据斜率公式以及两直线的位置关系与斜率的关系可得答案【解析】(1)由椭圆方程椭圆过点,可得,椭圆的方程为,离心率(2)直线与直线平行证明如下:设直线,设点的坐标为,由得,同理,由,有,在第四象限,且不在直线上,又,故,直线与直线平行9【2019安徽淮南一模】设椭圆的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且,过,三点的圆恰好与直线相切求椭圆的方程;过右焦点作斜率为的直线与椭圆交于两点,问在轴上是否存在点,使得以为邻边
15、的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,说明理由【思路引导】设点的坐标为,且,利用以及得出点的坐标,利用外接圆圆心到该直线的距离等于半径,可求出的值,进而得出与的值,从而得出椭圆的方程;令,得出,设点、,将直线l的方程与椭圆的方程联立,利用韦达定理,求出线段的中点的坐标,将条件“以为邻边的平行四边形是菱形”转化为,得出这两条直线的斜率之积为,然后得出的表达式,利用不等式的性质可求出实数的取值范围【解析】设椭圆C的焦距为,则点的坐标为,点的坐标为,设点Q的坐标为,且,如下图所示,则,所以,则点Q的坐标为,直线与直线AQ垂直,且点,所以,由,得,则,为直角三角形,且为斜边,线段的
16、中点为,的外接圆半径为2c由题意可知,点到直线的距离为,所以,因此,椭圆C的方程为由题意知,直线的斜率,并设,则直线l的方程为,设点、将直线的方程与椭圆C的方程联立,消去x得,由韦达定理得,所以,线段MN的中点为点由于以PM,PN为邻边的平行四边形是菱形,则,则,所以,由两点连线的斜率公式可得,得由于,则,所以,所以,因此,在x轴上存在点,使得以PM,PN为邻边的平行四边形是菱形,且实数m的取值范围是来源:学科网【同步训练】1已知椭圆的离心率为,其左、右焦点分别为F1,F2,点P(x0,y0)是坐标平面内一点,且(O为坐标原点)(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A、B
17、两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由【思路点拨】(1)设出P的坐标,利用|OP|的值求得x0和y0的关系式,同时利用求得x0和y0的另一关系式,进而求得c,通过椭圆的离心率求得a,最后利用a,b和c的关系求得b,则椭圆的方程可得(2)设出直线l的方程,与椭圆方程联立消去y,设A(x1,y1),B(x2,y2),则可利用韦达定理表示出x1+x2和x1x2,假设在y轴上存在定点M(0,m),满足题设,则可表示出,利用=0求得m的值假设在y轴上存在定点M(0,m),满足题设,则=由假设得对于任意的恒成立,即解得m=1学*科网因此,在y轴
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-89913.html