专题2.6 欲证不等恒成立差值函数求值域-2020届高考数学压轴题讲义(解答题)(原卷版)
《专题2.6 欲证不等恒成立差值函数求值域-2020届高考数学压轴题讲义(解答题)(原卷版)》由会员分享,可在线阅读,更多相关《专题2.6 欲证不等恒成立差值函数求值域-2020届高考数学压轴题讲义(解答题)(原卷版)(5页珍藏版)》请在七七文库上搜索。
1、【题型综述】利用导数解决不等式恒成立问题的策略:构造差函数根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式具体做法如下:首先构造函数,利用导数研究函数的单调性,求出最值,进而得出相应含参不等式,从而求出参数的取值范围,也可以分离变量,构造函数,直接把问题转化为函数的最值问题来源:学科网证明,时,可以构造函数,如果,则在上是减函数,同时若,由减函数的定义可知,当时,有,即证明【典例指引】例1已知函数,为其导函数.来源:学+科+网(1) 设,求函数的单调区间;(2) 若,设,为函数图象上不同的两点,且满足,设线段中点的横坐标为 证明:.例2已知定义域为的函数存在两个零
2、点(1)求实数的取值范围;(2)若,求证:例3已知函数(1)求函数的单调区间;(2)若关于的不等式恒成立,证明:且【新题展示】1【2019福建三明期末】已知函数.(1)求证:;(2)若关于的不等式恒成立,求实数的取值范围.2【2019陕西渭南质检】已知函数为常数的图象与y轴交于点A,曲线在点A处的切线斜率为(1)求a的值及函数的单调区间;(2)设,证明:当时,恒成立3【2019北京丰台区上学期期末】已知函数(1)求曲线在点处的切线方程;(2)求证:当时,4【2019广东东莞上学期期末调研】已知函数,(且为常数).(1)当时,求函数的最小值;(2)若对任意都有成立,求实数的取值范围.5【2019
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-89934.html