专题2.2 椭圆-20届高中数学同步讲义(理)人教版(选修2-1)
《专题2.2 椭圆-20届高中数学同步讲义(理)人教版(选修2-1)》由会员分享,可在线阅读,更多相关《专题2.2 椭圆-20届高中数学同步讲义(理)人教版(选修2-1)(43页珍藏版)》请在七七文库上搜索。
1、1椭圆的定义平面内与两个定点F1,F2的距离的和等于_(大于|F1F2|)的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两个焦点间的距离叫做椭圆的焦距椭圆的集合描述:设点M是椭圆上任意一点,点F1,F2是椭圆的焦点,则由椭圆的定义,椭圆就是集合PM|MF1|MF2|2a,0|F1F2|2a2椭圆的标准方程的推导过程如图,给定椭圆,它的焦点为F1,F2,焦距|F1F2|2c(c0),椭圆上任意一点到两焦点的距离之和等于2a(ac)(1)建系:以经过椭圆两焦点F1,F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy那么焦点F1,F2的坐标分别为_,_(2)列式:设M(x,y)是椭
2、圆上任意一点,由椭圆的定义得|MF1|MF2|2a,即 (3)化简:上式整理可得令,可得(ab0)3椭圆的标准方程椭圆的标准方程有两种形式:(1)焦点落在x轴上的椭圆的标准方程为(ab0),焦点为F1 (c,0),F2 (c,0),焦距为_,且_,如图1所示;(2)焦点落在y轴上的椭圆的标准方程为(ab0),焦点为F1 (0,c),F2 (0,c),焦距为_,且_,如图2所示图1 图2 图3注:椭圆方程中,a表示椭圆上的点到两焦点的距离的和的一半,可借助于图3记忆正数a,b,c恰好构成一个直角三角形,其中a是斜边,所以ab,ac且,其中c是焦距的一半对于图2中的椭圆,关系式ab,ac且也始终成
3、立4椭圆(ab0)的简单几何性质(1)范围易知,故,即;同理故椭圆位于直线和所围成的矩形框里(2)对称性在方程中,以代替或以代替或以代替、以代替,方程都不改变,故椭圆关于x轴、y轴和原点都对称原点为椭圆的对称中心,也称为椭圆的中心(3)顶点椭圆与x轴、y轴分别有两个交点,这四个交点即为椭圆与它的对称轴的交点,叫做椭圆的顶点其中x轴上两个顶点的连线段称为椭圆的长轴,y轴上两个顶点的连线段称为椭圆的短轴,长轴长为_,短轴长为_说明:依据椭圆的四个顶点,可以确定椭圆的具体位置(4)离心率椭圆的焦距与长轴长的比称为椭圆的_离心率能够刻画椭圆的扁平程度椭圆的扁平程度由离心率的大小确定,与椭圆的焦点所在的
4、坐标轴无关,e越大椭圆越扁,e越小椭圆越圆5椭圆,(ab0)的几何性质比较标准方程(ab0)(ab0)图形范围,对称性对称轴:x轴、y轴;对称中心:原点焦点左焦点F1 (c,0),右焦点F2 (c,0)下焦点F1 (0,c),上焦点F2 (0,c)顶点 轴线段A1A2,B1B2分别是椭圆的长轴和短轴;长轴长|A1A2|2a,短轴长|B1B2|2b,长半轴长为a,短半轴长为b离心率eK知识参考答案:1常数 2(c,0) (c,0) 32c b2c2 2c b2c2 42a 2b 离心率K重点椭圆的定义、标准方程及简单几何性质K难点椭圆标准方程的应用(以椭圆的标准方程为载体,与其他知识综合)K易错
5、忽略椭圆定义中的限制条件、焦点的位置、椭圆的范围而致错对椭圆的两种标准方程的理解对于方程,表示焦点在x轴上的椭圆且;表示焦点在y轴上的椭圆且;表示椭圆且对于方程,(1)若该方程表示焦点在x轴上的椭圆,则实数m的取值范围为_;(2)若该方程表示焦点在y轴上的椭圆,则实数m的取值范围为_;(3)若该方程表示椭圆,则实数m的取值范围为_【答案】(1)(2,10);(2)(6,2);(3)(6,2)(2,10) 【解析】(1)由题意可知,解得,故实数m的取值范围为(2,10)(3)由题意可知,解得且,故实数m的取值范围为(6,2)(2,10)【名师点睛】对于形如:Ax2By21(其中A0,B0,AB)
6、的椭圆的方程,其包含焦点在x轴上和在y轴上两种情况,当BA时,表示焦点在x轴上的椭圆;当BA时,表示焦点在y轴上的椭圆椭圆的定义及其标准方程的应用椭圆的定义给出了一个结论:椭圆上的点P到两焦点F1,F2的距离的和为常数2a,则已知椭圆上一点到一焦点的距离就可以利用|PF1|PF2|2a求出该点到另一焦点的距离学科#网已知F1,F2是椭圆的两个焦点,点P在椭圆上(1)若点P到焦点F1的距离等于1,则点P到焦点F2的距离为_;(2)过F1作直线与椭圆交于A,B两点,则的周长为_;(3)若,则点P到焦点F1的距离为_【答案】(1)3;(2)8;(3)(3)在中,由余弦定理可得,即,由椭圆的定义可得,
7、两式联立解得【名师点睛】在椭圆中,由三条线段,围成的三角形称为椭圆的焦点三角形,涉及椭圆的焦点三角形的问题,可结合椭圆的定义:求出结果,因此回归定义是求解椭圆的焦点三角形问题的常用方法同时应注意勾股定理、正弦定理、余弦定理等的灵活应用学科*网由椭圆方程研究简单几何性质描点法画椭圆的步骤:依据椭圆的范围变形方程,得到椭圆在第一象限内的图象对应的函数关系式;取点(x,y),列表、描点;用平滑的曲线连接各点,即得到椭圆在第一象限内的图象;利用椭圆的对称性画出整个椭圆求椭圆9x225y2225的长轴长、短轴长、离心率、焦点坐标和顶点坐标,并用描点法画出这个椭圆【答案】见解析【解析】将椭圆的方程化为标准
8、形式得,得a5,b3,则因此,长轴2a10,短轴长2b6,离心率焦点为F1(4,0)和F2(4,0),顶点为A1(5,0),A2(5,0),B1(0,3),B2(0,3)将方程变形为,根据可求出椭圆的两个顶点及其在第一象限内一些点的坐标(x,y),列表如下:x012345y32.942.752.41.80先描点,再用光滑曲线顺次连接这些点,得到椭圆在第一象限内的图形,再利用椭圆的对称性画出整个椭圆,如上图所示【名师点睛】解决此类问题时,应先把椭圆方程化成标准形式,注意分清焦点的位置,这样便于写出a,b的值,再根据c2a2b2求出c,进而求出椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标等几何性
9、质求椭圆的标准方程(1)定义法求椭圆的标准方程的步骤:由焦点坐标确定方程形式;由椭圆的定义求出a;由求出b(也可采用待定系数法进行求解,主要步骤可归纳为:先定型,再定量)(2)利用椭圆的几何性质求椭圆的标准方程的步骤(通常采用待定系数法):确定焦点位置;设出相应椭圆的方程(对于焦点位置不确定的椭圆可能有两种标准方程);根据已知条件构造关于参数的关系式,利用方程(组)求参数列方程(组)时常用的关系式有,等求满足下列条件的椭圆的标准方程:(1)焦点分别为,且经过点;(2)经过点,;(3)长轴长与短轴长的和为18,焦距为6;(4)经过点,且离心率;(5)经过点,且与椭圆有相同的焦点;(6)经过点,且
10、与椭圆有相同的离心率【答案】(1);(2);(3)或;(4)或;(5);(6)或【解析】(1)因为椭圆的焦点在y轴上,所以可设它的标准方程为方法1:由椭圆的定义知,所以又,所以,所以所求椭圆的标准方程为(2)方法1:若焦点在x轴上,设椭圆的标准方程为由已知条件得,解得,所以所求椭圆的标准方程为若焦点在y轴上,设椭圆的标准方程为学.科网由已知条件得,解得,由于,与矛盾,故舍去综上,所求椭圆的标准方程为方法2:设椭圆的一般方程为将点,代入一般方程,得,解得,所以所求椭圆的标准方程为(3)设椭圆的长轴长为2a,短轴长为2b,焦距为2c,由题意可知,结合可解得a5,b4,c3因为不确定焦点在哪个坐标轴
11、上,所以所求椭圆的标准方程为或(5)方法1:求出焦点坐标,则可转化为(1)的形式,此处不再赘述方法2:设所求椭圆的方程为,将点M的坐标代入可得,解得舍去故所求椭圆的标准方程为(6)方法1:求出离心率,由a,b,c之间的关系及方程过点N,列方程组即可求解,此处不再赘述方法2:设所求椭圆的方程为或,将点N的坐标代入可得或,即,故所求椭圆的标准方程为或,即或【名师点睛】(1)若椭圆的焦点位置不确定,需要分焦点在x轴上和在y轴上两种情况讨论,也可设椭圆的方程为,从而避免讨论(2)在椭圆的简单几何性质的应用中,轴长、离心率不能确定椭圆的焦点位置,因此仅依据这些条件确定的椭圆方程可能有两个(3)与椭圆有相
12、同焦点的椭圆方程可设为且,与椭圆有相同离心率的椭圆方程可设为,焦点在x轴上或,焦点在y轴上学科%网求椭圆的离心率离心率是椭圆的重要几何性质,也是高考命题的重点,求解方法一般有两种:易求a,c,代入求解;易求b,c,由求解;易求a,b,由求解列出含a,c的齐次方程,列式时常用公式代替式子中的b,然后将等式两边同时除以a的n次方(一般除以a或a2),从而利用转化为含e的方程,解方程即可但应注意(1)设F1,F2是椭圆E:的左、右焦点,P为直线上一点, 是底角为的等腰三角形,则椭圆E的离心率为_;(2)如图1,在平面直角坐标系xOy中,A1,A2,B1,B2为椭圆的四个顶点,F为其右焦点,直线A1B
13、2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为_【答案】(1);(2)【解析】(1)如图2,设直线交x轴于D点,因为是底角为的等腰三角形,则有,因为,所以,所以,即,即,即,所以椭圆E的离心率图1 图2【名师点睛】在解一元二次方程时得出的根一般有两个,此时要根据椭圆的离心率进行根的取舍,否则易产生增根与椭圆有关的轨迹问题求解有关椭圆的轨迹问题,一般有如下两种思路:首先通过题干中给出的等量关系列出等式,然后化简等式得到对应的轨迹方程;首先分析几何图形所揭示的几何关系,然后对比椭圆的定义,设出对应椭圆的标准方程,求出其中a,b的值,得到标准方程如图1,在圆C
14、:(x1)2y236内有一点A(1,0),点Q为圆C上一点,线段AQ的垂直平分线与C,Q的连线交于点M,求点M的轨迹方程图1 图2【答案】【解析】如图2,连接MA由题意知点M在线段CQ上,从而有|CQ|MQ|MC|又点M在AQ的垂直平分线上,则|MA|MQ|,故|MA|MC|CQ|6又A(1,0),C(1,0),故点M的轨迹是以(1,0),(1,0)为焦点的椭圆,且,故,故点M的轨迹方程为学科#网直线与椭圆的位置关系(1)判断直线与椭圆的位置关系时,一般把二者方程联立得到方程组,判断方程组解的个数,方程组有几个解,直线与椭圆有几个公共点,方程组的解对应公共点的坐标由直线与椭圆的公共点个数求参数
15、的取值范围时,联立二者方程消元化为一元方程,对于二次方程依据判别式与0的大小关系求解(2)求直线与椭圆的相交弦长时,可以先求出两个公共点的坐标,代入两点间距离公式,也可以联立方程消元为二次方程,利用根与系数的关系得到已知直线,椭圆C:试问当m取何值时,直线l与椭圆C: (1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点【答案】(1);(2);(3)(1)当,即时,方程有两个不同的实数解,可知原方程组有两组不同的实数解,这时直线l与椭圆C有两个不重合的公共点(2)当,即时,方程有两个相同的实数解,可知原方程组有两组相同的实数解,这时直线l与椭圆C有且只有一个公共点(3)当,即
16、或时,方程没有实数解,可知原方程组没有实数解,这时直线l与椭圆C没有公共点【名师点睛】联立方程组后,消去x还是消去y都可以,这是不影响最终计算结果的如图,已知斜率为1的直线l过椭圆C:的下焦点,交椭圆C于A,B两点,则弦AB的长等于_【答案】【名师点睛】解决直线与椭圆的交点问题常常利用设而不求和整体代入的方法,解题步骤为:(1)设直线与椭圆的交点为A(x1,y1),B(x2,y2);(2)联立直线与椭圆的方程,消元得到关于x或y的一元二次方程;(3)利用根与系数的关系设而不求;(4)利用题干中的条件转化为x1x2,x1x2或y1y2,y1y2,进而求解忽略椭圆定义中的限制条件从而导致错误(1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-90288.html