专题1.2 导数的计算-20届高中数学同步讲义(理)人教版(选修2-2)
《专题1.2 导数的计算-20届高中数学同步讲义(理)人教版(选修2-2)》由会员分享,可在线阅读,更多相关《专题1.2 导数的计算-20届高中数学同步讲义(理)人教版(选修2-2)(17页珍藏版)》请在七七文库上搜索。
1、1几个常用函数的导数几个常用函数的导数如下表:函数导数(为常数)2基本初等函数的导数公式(1)若,则;(2)若,则;(3)若,则;(4)若,则;(5)若,则;(6)若,则;(7)若,则;(8)若,则3导数运算法则(1);(2);(3)4复合函数的导数(1)复合函数的定义一般地,对于两个函数和,如果通过变量,可以表示成的函数,那么称这个函数为函数和的复合函数(composite function),记作(2)复合函数的求导法则复合函数的导数和函数,的导数间的关系为_,即对的导数等于对的导数与对的导数的乘积学科&网K知识参考答案:12 4K重点基本初等函数的导数公式、导数的四则运算法则K难点导数的
2、四则运算法则K易错求导公式及求导法则记忆错误求函数的导数(1)基本初等函数的求导公式是求导的基本依据,一定要记清形式,学会使用公式求导(2)应用导数运算法则求函数的导数的技巧:求导之前,对三角恒等式先进行化简,然后再求导,这样既减少了计算量,又可少出错利用代数恒等变形可以避开对商的形式求导在函数中有两个以上的因式相乘时,要注意多次使用积的求导法则,能展开的先展开成多项式,再求导(3)应用导数运算法则求函数的导数的原则:结合函数解析式的特点先进行恒等变形,把一个函数化成几个基本初等函数的加、减、乘、除的形式,再用运算法则求导下列求导运算正确的是ABCD【答案】B【名师点睛】要注意区分指数函数、对
3、数函数的求导公式,以免在运用时混淆学科¥网求下列函数的导数:(1);(2);(3)【答案】(1);(2);(3)【解析】(1)方法1:方法2:因为,所以(2)(3)复合函数求导对于复合函数的求导,一般步骤为:(1)弄清复合关系,将复合函数分解成基本初等函数形式;(2)利用求导法则分层求导;(3)最终结果要将中间变量换成自变量求下列函数的导数:(1);(2);(3);(4)【答案】见解析【名师点睛】复合函数的求导,关键在于分清函数的复合关系,合理选定中间变量,明确求导过程中每次是哪个变量对哪个变量求导导数几何意义的应用利用导数的几何意义解题时需注意:(1)切点既在原函数的图象上也在切线上,则切点
4、坐标既适合原函数的解析式,也适合切线方程,常由此建立方程组求解;(2)在切点处的导数值等于切线的斜率过函数的图象上一点的切线方程是ABC或D或【答案】D【名师点睛】求切线方程时,首先应判断所给点是不是切点,如果不是,需将切点坐标设出已知曲线,直线,且直线l与曲线C相切于点,求直线l的方程及切点坐标【答案】直线l的方程为,切点坐标为【解析】直线l过原点,直线l的斜率为,由点在曲线C上,得,则又,学科网又,整理得,此时,因此直线l的方程为,切点坐标为【名师点睛】求解时,注意根据题目条件舍去不合适的解,如本题需舍去因公式记忆不准确而致误求函数的导数【错解】【错因分析】,错解中因漏掉负号致误【正解】【
5、名师点睛】应熟记基本初等函数的求导公式和导数的四则运算法则,以防因记忆不牢而致误1已知,则ABCD2曲线在点处的切线方程为ABCD3若曲线在点处的切线方程是,则ABCD4已知函数,其中为实数,为的导函数,若,则实数的值为ABCD5设函数的导函数为,且,则ABCD6已知为自然对数的底数,曲线在点处的切线与直线平行,则实数ABCD7已知函数,则ABCD8已知函数,其中a为实数,为的导函数,若,则a的值为_9已知函数的图象在点处的切线过点,则实数_10若曲线在处的切线与直线垂直,则实数_11求下列各函数的导数:(1);(2)12已知抛物线,求过点且与抛物线相切的直线的方程13曲线在点处的切线与坐标轴
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-90309.html