专题2.2 直接证明与间接证明-20届高中数学同步讲义(文)人教版(选修1-2)
《专题2.2 直接证明与间接证明-20届高中数学同步讲义(文)人教版(选修1-2)》由会员分享,可在线阅读,更多相关《专题2.2 直接证明与间接证明-20届高中数学同步讲义(文)人教版(选修1-2)(19页珍藏版)》请在七七文库上搜索。
1、1综合法的定义利用_和某些数学_、_、_等,经过一系列的_,最后推导出所要证明的结论成立,这种证明方法叫做综合法2综合法的特点从“已知”看“_”,逐步推向“_”,其逐步推理,是由_导_,实际上是寻找“已知”的_条件3综合法的基本思路用_表示已知条件、已有的定义、定理、公理等,_表示所要证明的结论,则综合法的推理形式为其逻辑依据是三段论式演绎推理4分析法定义从要证明的_出发,逐步寻求使它成立的_条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.学科&网5分析法的特点分析法是综合法的逆过程,即从“未知”看“_”,执果索因,逐步靠
2、拢“_”,其逐步推理,实际上是要寻找“结论”的_条件分析法的推理过程也属于演绎推理,每一步推理都是严密的逻辑推理6分析法的基本思路分析法的基本思路是“执果索因”,从待证结论或需求问题出发,一步一步地探索下去,最后得到一个明显成立的条件若用_表示要证明的结论,则分析法的推理形式为7分析法与综合法的区别与联系(1)区别:综合法是“由因导果”,而分析法则是“执果索因”,它们是截然相反的两种证明方法分析法便于我们去寻找思路,而综合法便于过程的叙述,两种方法各有所长,在解决具体的问题时,结合起来运用效果会更好(2)联系:在分析法中,从结论出发的每一步所得到的判断都是使结论成立的充分条件,最后的一步归结为
3、已被证明了的事实因此从分析法的最后一步又可以倒推回去,直到结论,这个倒推的证明过程就是综合法(3)分析法便于思考,叙述较繁;综合法叙述条理清楚,不便于思考,综合法是分析法的逆向思维过程,表述简单,条理清楚所以实际证题时,可将分析法、综合法结合起来使用,即:分析找思路,综合写过程8反证法的定义一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出_,因此说明假设_,从而证明了原命题_,这样的证明方法叫做反证法反证法是间接证明的一种基本方法9反证法证题的原理(1)反证法的原理是“否定之否定等于肯定”(2)用反证法解题的实质就是否定结论,导出矛盾,从而说明原结论正确10
4、反证法常见的矛盾类型(1)反证法的关键是在正确的推理下得出矛盾这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、公认的简单事实矛盾等矛盾是在推理过程中发现的,不是推理之前设计的(2)反证法的适用对象作为一种间接证明方法,反证法尤其适合证明以下几类数学问题:直接证明需分多种情况的;结论本身是以否定形式出现的一类命题否定性命题;关于唯一性、存在性的命题;结论以“至多”、“至少”等形式出现的命题;条件与结论联系不够明显,直接由条件推结论的线索不够清晰,结论的反面是比原结论更具体、更容易研究的命题K知识参考答案:1已知条件 定义 公理 定理 推理论证2可知 未知 因 果 必要3P Q4
5、结论 充分8矛盾 错误 成立K重点综合法和分析法的思维过程及特点,反证法的特点K难点综合法和分析法的应用,反证法的应用K易错忽视隐含条件导致错误综合法的应用综合法的证明步骤如下:(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等;(2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程学科*网特别地,根据题目特点选取合适的证法可以简化解题过程设实数成等差数列,实数成等比数列,非零实数是与的等差中项.求证:.分析法的应用分析法的证明过程是:确定结论与已知条件间的联系,合理选择相关定义、定理对结论进行转化,直到获得一个显而易见的命题即可已知,利用分析法证明:.反证
6、法的应用应用反证法的注意事项:(1)用反证法证题时,必须把结论的否定作为条件使用,否则就不是反证法有时在证明命题“若,则”的过程中,虽然否定了结论,但是在证明过程中没有把“”当作条件使用,也推出了矛盾或证得了结论,那么这种证明过程不是反证法(2)用反证法证题,最后要产生一个矛盾命题,常见的主要矛盾有:与数学公理、定理、公式、定义或已被证明了的结论相矛盾;与假设矛盾;与已知条件矛盾;与公认的简单事实矛盾(3)矛盾是在推理过程中发现的,不是推理之前设计的已知.求证:,中至少有一个不小于6.【名师点睛】反证法证明“至少”“至多”型命题,可减少讨论情况,目标明确.否定结论时需弄清楚结论的否定是什么,避
7、免出现错误.需注意“至少有一个”的否定为“一个都没有”,“至多有一个”的否定为“至少有两个”. 学科*网设数列是公比为的等比数列,是它的前项和(1)求证:数列不是等比数列;(2)数列是等差数列吗?为什么?【解析】(1)方法1:(反证法)若是等比数列,则,即因为,所以,即,这与矛盾,故不是等比数列方法2:只需证明,因为,所以忽视隐含条件导致错误设,为偶数,求证:【错解】为偶数,又和同号,【错因分析】这里题目中的条件为,而不是,因此,应分且和有一个为负值两种情况加以讨论【正解】当时,,,当中有一个为负值时,不妨设,且,故,由知结论成立【名师点睛】审题过程中注意将条件等价转化,要将所有可能情形找全,
8、不要漏掉隐含的条件反证法证明的常见错误已知,求证:【错解】假设,则,与题设条件,矛盾假设不成立,原命题成立【错因分析】错解没有弄清原题待证的结论是什么,导致反设错误“求证:a0,b0,c0”的含义是“求证a、b、c三数都是正数”,故反设应为“假设a、b、c中至少有一个不大于0”【正解】证法1:假设中至少有一个不大于0,不妨设,若,则由,得,由得,这与已知矛盾又若,则与矛盾故“”不成立,同理可证证法2:假设是不全为正的实数,由于,所以中只能是两负一正,不妨设,这与矛盾,故假设不成立,原结论成立即全为正实数学科&网已知实数p满足不等式(2p+1)(p+2)0,用反证法证明:关于x的方程x2-2x+
9、5-p2=0无实数根.【错解】假设方程x2-2x+5-p2=0有实数根,由已知实数p满足不等式(2p+1)(p+2)0,解得-2p,而关于x的方程x2-2x+5-p2=0的根的判别式=4(p2-4).-2p,p24,0,即关于x的方程x2-2x+5-p2=0无实数根.【错因分析】错解在解题的过程中并没有用到假设的结论,故不是反证法.【正解】假设方程x2-2x+5-p2=0有实数根,则该方程的根的判别式=4-4(5-p2)0,解得p2或p-2,而由已知实数p满足不等式(2p+1)(p+2)0,解得-2p.数轴上表示的图形无公共部分,故假设不成立,从而关于x的方程x2-2x+5-p2=0无实数根.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-90429.html