2019年江苏省中考数学真题分类汇编 专题12 图形的性质之解答题(解析版)
《2019年江苏省中考数学真题分类汇编 专题12 图形的性质之解答题(解析版)》由会员分享,可在线阅读,更多相关《2019年江苏省中考数学真题分类汇编 专题12 图形的性质之解答题(解析版)(49页珍藏版)》请在七七文库上搜索。
1、专题12图形的性质之解答题参考答案与试题解析一解答题(共31小题)1(2019南京)如图,D是ABC的边AB的中点,DEBC,CEAB,AC与DE相交于点F求证:ADFCEF【解答】证明:DEBC,CEAB,四边形DBCE是平行四边形,BDCE,D是AB的中点,ADBD,ADEC,CEAD,AECF,ADFE,ADFCEF(ASA)【点睛】本题主要考查了平行四边形的判定与性质以及全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等2(2019无锡)如图,在ABC中,ABAC,点D、E分别在AB、AC上,BDCE,BE、CD相交于点O(1)求证:DBCECB;(2)求证:OBOC【解答】(
2、1)证明:ABAC,ECBDBC,在DBC与ECB中,DBCECB(SAS);(2)证明:由(1)知DBCECB,DCBEBC,OBOC【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型3(2019镇江)如图,四边形ABCD中,ADBC,点E、F分别在AD、BC上,AECF,过点A、C分别作EF的垂线,垂足为G、H(1)求证:AGECHF;(2)连接AC,线段GH与AC是否互相平分?请说明理由【解答】(1)证明:AGEF,CHEF,GH90,AGCH,ADBC,DEFBFE,AEGDEF,CFHBFE,AEGCFH,在
3、AGE和CHF中,AGECHF(AAS);(2)解:线段GH与AC互相平分,理由如下:连接AH、CG,如图所示:由(1)得:AGECHF,AGCH,AGCH,四边形AHCG是平行四边形,线段GH与AC互相平分【点睛】本题考查了全等三角形的判定与性质、平行四边形的判定与性质、平行线的性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键4(2019扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在
4、直线l2上的正投影就是线段A1C请依据上述定义解决如下问题:(1)如图1,在锐角ABC中,AB5,T(AC,AB)3,则T(BC,AB)2;(2)如图2,在RtABC中,ACB90,T(AC,AB)4,T(BC,AB)9,求ABC的面积;(3)如图3,在钝角ABC中,A60,点D在AB边上,ACD90,T(AD,AC)2,T(BC,AB)6,求T(BC,CD),【解答】解:(1)如图1中,作CHABT(AC,AB)3,AH3,AB5,BH532,T(BC,AB)BH2,故答案为2(2)如图2中,作CHAB于HT(AC,AB)4,T(BC,AB)9,AH4,BH9,ACBCHACHB90,A+A
5、CH90,ACH+BCH90,ABCH,ACHCBH,CH6,SABCABCH13639(3)如图3中,作CHAD于H,BKCD于KACD90,T(AD,AC)2,AC2,A60,ADCBDK30,CDAC2,AD2AC4,AHAC1,DHADAH3,T(BC,AB)6,CHAB,BH6,DBBHDH3,在RtBDK中,K90,BD3,BDK30,DKBDcos30,CKCD+DK2,T(BC,CD)CK【点睛】本题属于三角形综合题,考查了正投影的定义,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题5(20
6、19淮安)已知:如图,在ABCD中,点E、F分别是边AD、BC的中点求证:BEDF【解答】证明:四边形ABCD是平行四边形,ADBC,ADBC,点E、F分别是ABCD边AD、BC的中点,DEAD,BFBC,DEBF,四边形BFDE是平行四边形,BEDF【点睛】此题考查了平行四边形的判定与性质此题难度不大,注意掌握数形结合思想的应用6(2019宿迁)如图,矩形ABCD中,AB4,BC2,点E、F分别在AB、CD上,且BEDF(1)求证:四边形AECF是菱形;(2)求线段EF的长【解答】(1)证明:在矩形ABCD中,AB4,BC2,CDAB4,ADBD2,CDAB,DB90,BEDF,CFAE4,
7、AFCE,AFCFCEAE,四边形AECF是菱形;(2)解:过F作FHAB于H,则四边形AHFD是矩形,AHDF,FHAD2,EH1,EF【点睛】本题考查了矩形的性质,菱形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键7(2019扬州)如图,在平行四边形ABCD中,AE平分DAB,已知CE6,BE8,DE10(1)求证:BEC90;(2)求cosDAE【解答】(1)证明:四边形ABCD是平行四边形,DCAB,ADBC,DCAB,DEAEAB,AE平分DAB,DAEEAB,DAEDEAADDE10,BC10,ABCDDE+CE16,CE2+BE262+82100BC2,BCE是直角三角形
8、,BEC90;(2)解:ABCD,ABEBEC90,AE8,cosDAEcosEAB【点睛】本题考查了平行四边形性质,角平分线定义,平行线的性质,等腰三角形的判定、三角函数等知识点,证明ADDE是解题的关键8(2019连云港)如图,在ABC中,ABAC将ABC沿着BC方向平移得到DEF,其中点E在边BC上,DE与AC相交于点O(1)求证:OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由【解答】(1)证明:ABAC,BACB,ABC平移得到DEF,ABDE,BDEC,ACBDEC,OEOC,即OEC为等腰三角形;(2)解:当E为BC的中点时,四
9、边形AECD是矩形,理由是:ABAC,E为BC的中点,AEBC,BEEC,ABC平移得到DEF,BEAD,BEAD,ADEC,ADEC,四边形AECD是平行四边形,AEBC,四边形AECD是矩形【点睛】本题考查了矩形的判定、平行四边形的判定、平移的性质、等腰三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键9(2019连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N判断线段DN、MB、EC之间的数量关系,并说明理由问题探究:在“问题情境”的基础上(1)如图2,若垂足P恰好为AE的中点
10、,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F求AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将APN沿着AN翻折,点P落在点P处,若正方形ABCD的边长为4,AD的中点为S,求PS的最小值问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边BC恰好经过点A,CN交AD于点F分别过点A、F作AGMN,FHMN,垂足分别为G、H若AG,请直接写出FH的长【解答】问题情境:解:线段DN、MB、EC之间的数量关系为:DN+MBEC;理由如下:四边形ABCD是正方形,ABEBCD90
11、,ABBCCD,ABCD,过点B作BFMN分别交AE、CD于点G、F,如图1所示:四边形MBFN为平行四边形,NFMB,BFAE,BGE90,CBF+AEB90,BAE+AEB90,CBFBAE,在ABE和BCF中,ABEBCF(ASA),BECF,DN+NF+CFBE+EC,DN+MBEC;问题探究:解:(1)连接AQ,过点Q作HIAB,分别交AD、BC于点H、I,如图2所示:四边形ABCD是正方形,四边形ABIH为矩形,HIAD,HIBC,HIABAD,BD是正方形ABCD的对角线,BDA45,DHQ是等腰直角三角形,HDHQ,AHQI,MN是AE的垂直平分线,AQQE,在RtAHQ和Rt
12、QIE中,RtAHQRtQIE(HL),AQHQEI,AQH+EQI90,AQE90,AQE是等腰直角三角形,EAQAEQ45,即AEF45;(2)连接AC交BD于点O,如图3所示:则APN的直角顶点P在OB上运动,设点P与点B重合时,则点P与点D重合;设点P与点O重合时,则点P的落点为O,AOOD,AOD90,ODAADO45,当点P在线段BO上运动时,过点P作PGCD于点G,过点P作PHCD交CD延长线于点H,连接PC,点P在BD上,APPC,在APB和CPB中,APBCPB(SSS),BAPBCP,BCDMPA90,PCNAMP,ABCD,AMPPNC,PCNPNC,PCPN,APPN,
13、PNA45,PNP90,PNH+PNG90,PNH+NPH90,PNG+NPG90,NPGPNH,PNGNPH,由翻折性质得:PNPN,在PGN和NHP中,PGNNHP(ASA),PGNH,GNPH,BD是正方形ABCD的对角线,PDG45,易得PGGD,GNDH,DHPH,PDH45,故PDA45,点P在线段DO上运动;过点S作SKDO,垂足为K,点S为AD的中点,DS2,则PS的最小值为;问题拓展:解:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,如图4:则EGAG,PHFH,AE5,在RtABE中,BE3,CEBCBE1,BECQ90,AEBQEC,ABEQCE,3,QEA
14、E,AQAE+QE,AGMN,AGM90B,MAGEAB,AGMABE,即,解得:AM,由折叠的性质得:ABEB3,BB90,CBCD90,BM,AC1,BAD90,BAMCFA,AFCMAB,解得:AF,DF4,AGMN,FHMN,AGFH,AQFP,DFPDAQ,即,解得:FP,FHFP【点睛】本题是四边形综合题目,考查了正方形的性质、翻折变换的性质、勾股定理、相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解题的关键10(2019无锡)如图1,在矩形ABCD中,BC3,动点P从B出发,以每秒1个单位的
15、速度,沿射线BC方向移动,作PAB关于直线PA的对称PAB,设点P的运动时间为t(s)(1)若AB2如图2,当点B落在AC上时,显然PAB是直角三角形,求此时t的值;是否存在异于图2的时刻,使得PCB是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由(2)当P点不与C点重合时,若直线PB与直线CD相交于点M,且当t3时存在某一时刻有结论PAM45成立,试探究:对于t3的任意时刻,结论“PAM45”是否总是成立?请说明理由【解答】解:(1)如图1中,四边形ABCD是矩形,ABC90,AC,PCBACB,PBCABC90,PCBACB,PB24如图21中,当PCB90时,四
16、边形ABCD是矩形,D90,ABCD2,ADBC3,DB,CBCDDB,在RtPCB中,BP2PC2+BC2,t2()2+(3t)2,t2如图22中,当PCB90时,在RtADB中,DB,CB3在RtPCB中则有:,解得t6如图23中,当CPB90时,易证四边形ABP为正方形,易知t2综上所述,满足条件的t的值为2s或6s或2s(2)如图31中,PAM452+345,1+445又翻折,12,34,又ADMABM,AMAM,AMDAMB(AAS),ADABAB,即四边形ABCD是正方形,如图,设APBxPAB90x,DAPx,易证MDABAM(HL),BAMDAM,翻折,PABPAB90x,DA
17、BPABDAP902x,DAMDAB45x,MAPDAM+PAD45【点睛】本题属于四边形综合题,考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题11(2019盐城)如图是一张矩形纸片,按以下步骤进行操作:()将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图;()在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B处,如图,两次折痕交于点O;()展开纸片,分别连接OB、OE、OC、FD,如图【探究】(1)证明:OBCOED;(2)若AB8,设BC为x,OB2为
18、y,求y关于x的关系式【解答】解:(1)证明:由折叠可知,ADED,BCODCOADOCDO45BCDE,COD90,OCOD,在OBCOED中,OBCOED(SAS);(2)过点O作OHCD于点H由(1)OBCOED,OEOB,BCx,则ADDEx,CE8x,OCOD,COD90CHCDAB4,OHCD4,EHCHCE4(8x)x4在RtOHE中,由勾股定理得OE2OH2+EH2,即OB242+(x4)2,y关于x的关系式:yx28x+32【点睛】本题是四边形综合题,熟练运用轴对称的性质和全等三角形的判定以及勾股定理是解题的关键12(2019苏州)已知矩形ABCD中,AB5cm,点P为对角线
19、AC上的一点,且AP2cm如图,动点M从点A出发,在矩形边上沿着ABC的方向匀速运动(不包含点C)设动点M的运动时间为t(s),APM的面积为S(cm2),S与t的函数关系如图所示(1)直接写出动点M的运动速度为2cm/s,BC的长度为10cm;(2)如图,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着DCB的方向匀速运动,设动点N的运动速度为v(cm/s)已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时APM与DPN的面积分别为S1(cm2),S2(cm2)求动点N运动速度v(c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019年江苏省中考数学真题分类汇编 专题12 图形的性质之解答题解析版 2019 江苏省 中考 数学 分类 汇编 专题 12 图形 性质 解答 解析
链接地址:https://www.77wenku.com/p-90645.html