北京市2019年中考数学真题与模拟题分类汇编 专题05 方程与不等式之填空题(22道题)(解析版)
《北京市2019年中考数学真题与模拟题分类汇编 专题05 方程与不等式之填空题(22道题)(解析版)》由会员分享,可在线阅读,更多相关《北京市2019年中考数学真题与模拟题分类汇编 专题05 方程与不等式之填空题(22道题)(解析版)(11页珍藏版)》请在七七文库上搜索。
1、专题05 方程与不等式之填空题参考答案与试题解析一填空题(共22小题)1(2019房山区二模)某校进行篮球联赛,每场比赛都要分出胜负,每胜1场得2分,负1场得1分如果某队在10场比赛中得到16分,那么这个队胜负场数可以是胜6场,负4场(写出一种情况即可)【答案】解:设这个队胜x场,负y场,根据题意,得x+y=102x+y=16解得x=6y=4故答案是:胜6场,负4场【点睛】本题考查了二元一次方程组的应用和一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组2(2019昌平区二模)某学校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,至少买
2、一个排球,在购买资金恰好用尽的情况下,购买方案有3种【答案】解:设可以购买x个篮球,y个排球,依题意,得:120x+90y1200,x10-34yy为正整数,x为非负整数,x=7y=4,x=4y=8,x=1y=12共有3种购买方案故答案为:3【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键3(2019西城区二模)有大小两种货车,1辆大货车与3辆小货车额定载重量的总和为23吨,2辆大货车与5辆小货车额定载重量的总和为41吨.1辆大货车、1辆小货车的额定载重量分别为多少吨?设1辆大货车的额定载重量为x吨,1辆小货车的额定载重量为y吨,依题意,可以列方程组为x+3
3、y=232x+5y=41【答案】解:由题意可得,x+3y=232x+5y=41,故答案为:x+3y=232x+5y=41【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组4(2019怀柔区二模)为打造世界级原始创新战略高地的综合性国家科学中心,经过延伸扩建的怀柔科学城,已经从怀柔区延伸到密云区,两区占地面积共100.9平方公里,其中怀柔区占地面积比密云占地面积的2倍还多3.4平方公里,如果设科学城怀柔占地面积为x平方公里,密云占地面积是y平方公里,则计算科学城在怀柔和密云的占地面积各是多少平方公里,依题意可列方程组为x+y=100.9x=2y+3.4【答
4、案】解:设科学城怀柔占地面积为x平方公里,密云占地面积是y平方公里,依题意有x+y=100.9x=2y+3.4故答案为:x+y=100.9x=2y+3.4【点睛】此题考查了根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组5(2019丰台区二模)学校向同学们征集校园便道地砖铺设的图形设计,琳琳用学校提供的完全相同的小长方形模具(如图1)拼出一个大长方形和一个正方形(如图2、图3),其中所拼正方形中间留下一个小正方形的空白,如果所拼图形中空白的小正方形边长等于3cm,依据题意,列出关于a、b的方程组为:3a=5b2b+a=2a+3【答案】解:由分析知方程组
5、为3a=5b2b+a=2a+3故答案是:3a=5b2b+a=2a+3【点睛】本题考查了由实际问题抽象出二元一次方程组,此题的关键在于找到等量关系,仔细观察图形,根据矩形的边的性质,不难找到相应的等量关系6(2019大兴区一模)鸡兔同笼问题是我国古代著名的数学趣题,出自孙子算经原文为:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?小雪自己解决完此题后,又饶有兴趣地为同学编制了四道题目:今有雉兔同笼,上有三十头,下有五十二足,问雉兔各几何?今有雉兔同笼,上有三十头,下有八十一足,问雉兔各几何?今有雉兔同笼,上有三十四头,下有九十足,问雉兔各几何?今有雉兔同笼,上有三十四头,下有九十二足,
6、问雉兔各几何?根据小雪编制的四道题目的数据,可以求得鸡兔只数的题目是(填题目前的序号)【答案】解:设笼中有x只雉,y只兔,根据题得,x+y=302x+4y=52,解得x=34y=-4,不符合题;x+y=302x+4y=81,此方程组无整数解,不符合题意;x+y=342x+4y=90,解得x=23y=11,符合题意;x+y=342x+4y=92,解得x=22y=12,符合题意;故答案为:【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系(2)设元:找出题中的两个关键的未知量,并用字母表示出来(
7、3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组(4)求解(5)检验作答:检验所求解是否符合实际意义,并作答7(2019朝阳区一模)某班对思想品德,历史,地理三门课程的选考情况进行调研,数据如下:科目思想品德历史地理参考人数(人)191318其中思想品德、历史两门课程都选了的有3人,历史、地理两门课程都选了的有4人,则该班选了思想品德而没有选历史的有16人;该班至少有学生29人【答案】解:思想品德、历史两门课程都选了的有3人,选了思想品德而没有选历史的有19316人,设三门课都选的有x人,同时选择地理和政治的有y人,则有总人数为19+18+13342xy432xy,选择历史没有选择
8、政治的有6人,2x6,x3,x1,2,只选政治的现在有19341y11y,y最大是10,该班至少有学生4341029,故答案为16;29;【点睛】本题考查统计的应用;能够将问题转化为二元一次方程,借助实际问题的取值情况,求至少的人数;8(2019大兴区一模)分式方程1x-1=32x的解是x3【答案】解:去分母,得 2x3(x1),去括号,得 2x3x3,解得 x3,检验:将x3代入原分式方程,左边=12=右边,故原分式方程的解为x3故答案为x3【点睛】本题考查了分式方程的解,熟练解解分式方程是解题的关键9(2019丰台区一模)京张高铁是2022年北京冬奥会的重要交通保障设施京张高铁设计时速35
9、0公里,建成后,乘高铁从北京到张家口的时间将缩短至1小时如图,京张高铁起自北京北站,途经昌平、八达岭长城、怀来等站,终点站为河北张家口南,全长174公里如果按此设计时速运行,设每站(不计起始站和终点站)停靠的平均时间是x分钟,那么依题意,可列方程为8x60+174350=1【答案】解:设每站(不计起始站和终点站)停靠的平均时间是x分钟,依题意得:8x60+174350=1故答案是:8x60+174350=1【点睛】考查了由实际问题抽象出一元一次方程,解题的关键是找准等量关系,列出方程注意:将x分钟转化为x60小时10(2019顺义区一模)已知|xy+3|+2x+y=0,则xy的值为2【答案】解
10、:根据题意得:x-y+3=02x+y=0,方程可整理得:x-y=-32x+y=0,+得:3x3,解得:x1,把x1代入得:1y3,解得:y2,原方程组的解为:x=-1y=2,xy(1)22,故答案为:2【点睛】本题考查了解二元一次方程组,非负数的性质:绝对值,非负数的性质:算术平方根,正确掌握绝对值,算术平方根的定义和加减消元法解二元一次方程组是解题的关键11(2019西城区一模)高速公路某收费站出城方向有编号为A,B,C,D,E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量是不变的同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号A,B
11、B,CC,DD,EE,A通过小客车数量(量)260330300360240在A,B,C,D,E五个收费出口中,每20分钟通过小客车数量最多的一个收费出口的编号是B【答案】解:33026070,33030030,36030060,360240120,26024020,CA,BD,EC,DA,BE,由BD和DA得BA,由EC和BE得BC,每20分钟通过小客车数量最多的一个收费出口的编号是B,故答案为:B【点睛】本题考查了不等式的性质,正确的理解题意是解题的关键12(2019海淀区一模)2019年2月,全球首个5G火车站在上海虹桥火车站启动,虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍,在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京市2019年中考数学真题与模拟题分类汇编 专题05 方程与不等式之填空题22道题解析版 北京市 2019 年中 数学 模拟 分类 汇编 专题 05 方程 不等式 填空 22 道题 解析
链接地址:https://www.77wenku.com/p-90773.html