北京市2019年中考数学真题与模拟题分类汇编 专题14 图形的性质之解答题(3)(45道题)(原卷版)
《北京市2019年中考数学真题与模拟题分类汇编 专题14 图形的性质之解答题(3)(45道题)(原卷版)》由会员分享,可在线阅读,更多相关《北京市2019年中考数学真题与模拟题分类汇编 专题14 图形的性质之解答题(3)(45道题)(原卷版)(23页珍藏版)》请在七七文库上搜索。
1、专题14 图形的性质之解答题(3)(45道题)一解答题(共45小题)1(2019顺义区一模)已知:如图,AB是O的直径,点C是O上一点,点P在AB的延长线上,且AP30(1)求证:PC是O的切线;(2)连接BC,若AB4,求PBC的面积2(2019海淀区一模)如图,在四边形ABCD中,ABCD,ABBC2CD,E为对角线AC的中点,F为边BC的中点,连接DE、EF(1)求证:四边形CDEF为菱形;(2)连接DF交AC于点G,若DF2,CD,求AD的长3(2019顺义区一模)已知:如图,四边形ABCD是矩形,ECDDBA,CED90,AFBD于点F(1)求证:四边形BCEF是平行四边形;(2)若
2、AB4,AD3,求EC的长4(2019东城区一模)下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程已知:如图1,直线BC及直线BC外一点P求作:直线PE,使得PEBC作法:如图2在直线BC上取一点A,连接PA;作PAC的平分线AD;以点P为圆心,PA长为半径画弧,交射线AD于点E;作直线PE所以直线PE就是所求作的直线根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明证明:AD平分PAC,PADCADPAPE,PAD ,PEA ,PEBC( )(填推理依据)5(2019顺义区一模)下面是小明同学设计的“过直线外一点作这条直线的垂线”的
3、尺规作图过程已知:直线l及直线l外一点P求作:直线PQ,使得PQl作法:如图,在直线l上取一点A,以点P为圆心,PA长为半径画弧,与直线l交于另一点B;分别以A,B为圆心,PA长为半径在直线l下方画弧,两弧交于点Q;作直线PQ所以直线PQ为所求作的直线根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接PA,PB,QA,QBPAPBQAQB,四边形APBQ是菱形 (填推理的依据)PQAB (填推理的依据)即PQl6(2019东城区一模)如图,AB与O相切于点A,P为OB上一点,且BPBA,连接AP并延长交O于点C,连接OC(1)求证:OCO
4、B;(2)若O的半径为4,AB3,求AP的长7(2019海淀区一模)下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程已知:如图1,直线l及直线l外一点P求作:直线PQ,使PQl作法:如图2,在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A、B两点;连接PA,以B为圆心,AP长为半径画弧,交半圆于点Q;作直线PQ;所有直线PQ就是所求作的直线根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面的证明:证明:连接PB、QBPAQB, PBAQPB( )(填推理的依据)PQl( )(填推理的依据)8(2019海淀区一模)如图,AB是
5、O的直径,弦CDAB于点E,在O的切线CM上取一点P,使得CPBCOA(1)求证:PB是O的切线;(2)若AB4,CD6,求PB的长9(2019海淀区一模)如图1,线段AB及一定点C、P是线段AB上一动点,作直线CP,过点A作AQCP于点Q,已知AB7cm,设A、P两点间的距离为xcm,A、Q两点间的距离为y1cm,P、Q两点间的距离为y2cm小明根据学习函数的经验,分别对函数y1、y2随自变量x的变化而变化的规律进行了探究下面是小明的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值 x/cm00.30.50.811.5234567y
6、1/cm00.280.490.7911.481.872.372.612.722.762.78y2/cm00.080.090.0600.290.731.82 4.205.336.41(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当APQ中有一个角为30时,AP的长度约为 cm10(2019海淀区一模)如图,在等腰直角ABC中,ABC90,D是线段AC上一点(CA2CD),连接BD,过点C作BD的垂线,交BD的延长线于点E,交BA的延长线于点F(1)依题意补全图形;(2)若ACE,求ABD
7、的大小(用含的式子表示);(3)若点G在线段CF上,CGBD,连接DG判断DG与BC的位置关系并证明;用等式表示DG、CG、AB之间的数量关系为 11(2019石景山区一模)如图,AB是O的直径,过O上一点C作O的切线CD,过点B作BECD于点E,延长EB交O于点F,连接AC,AF(1)求证:CEAF;(2)连接BC,若O的半径为5,tanCAF2,求BC的长12(2019西城区一模)如图,在ABC中,ACBC,点D,E,F分别是AB,AC,BC的中点,连接DE,DF(1)求证:四边形DFCE是菱形;(2)若A75,AC4,求菱形DFCE的面积13(2019西城区一模)下面是小东设计的“作圆的
8、一个内接矩形,并使其对角线的夹角为60”的尺规作图过程已知:O求作:矩形ABCD,使得矩形ABCD内接于O,且其对角线AC,BD的夹角为60作法:如图作O的直径AC;以点A为圆心,AO长为半径画弧,交直线AC上方的圆弧于点B;连接BO并延长交O于点D;所以四边形ABCD就是所求作的矩形根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明证明:点A,C都在O上,OAOC同理OBOD四边形ABCD是平行四边形AC是O的直径,ABC90( )(填推理的依据)四边形ABCD是矩形AB BO,四边形ABCD四所求作的矩形14(2019石景山区一模)下面是小立设
9、计的“过直线外一点作这条直线的平行线”的尺规作图过程已知:如图1,直线l及直线l外一点A求作:直线AD,使得ADl作法:如图2,在直线l上任取一点B,连接AB;以点B为圆心,AB长为半径画弧,交直线l于点C;分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);作直线AD所以直线AD就是所求作的直线根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明(说明:括号里填推理的依据)证明:连接CDADCDBCAB,四边形ABCD是 ( )ADl( )15(2019北京一模)下面是“过直线外一点作已知直线的垂线”的尺规作图过程已知:直线l及直
10、线l外一点P求作:直线PQ,使得PQl,垂足为Q作法:如图,在直线l上任取一点A;以点P为圆心,PA为半径作圆,交直线l于点B;分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点C;连接PC交直线l于点Q则直线PQ就是所求作的垂线根据上述尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:PA ,AC ,PQl( )(填推理的依据)16(2019北京一模)如图,RtABC中,ACB90,点D在AC边上,以AD为直径作O交BD的延长线于点E,CEBC(1)求证:CE是O的切线;(2)若CD2,BD2,求O的半径17(2019北京一模)如图,ABCD中
11、,E,F分别是边BC,AD的中点,BAC90(1)求证:四边形AECF是菱形;(2)若BC4,B60,求四边形AECF的面积18(2019北京一模)如图,等边ABC的边长为3cm,点N在AC边上,AN1cmABC边上的动点M从点A出发,沿ABC运动,到达点C时停止设点M运动的路程为xcm,MN的长为ycm小西根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究下面是小西的探究过程,请补充完整:(1)通过取点、画图、测量,得到了y与x的几组对应值;x/cm00.511.522.533.544.555.56y/cm10.8711.322.182.652.291.81.731.82(2
12、)在平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,画出该函数的图象;(3)结合函数图象,解决问题:当MN2cm时,点M运动的路程为 cm19(2019门头沟区一模)对于平面直角坐标系xOy中的线段MN和点P,给出如下定义:点A是线段MN上一个动点,过点A作线段MN的垂线l,点P是垂线l上的另外一个动点如果以点P为旋转中心,将垂线l沿逆时针方向旋转60后与线段MN有公共点,我们就称点P是线段MN的“关联点”如图,M(1,2),N(4,2)(1)在点P1(1,3),P2(4,0),P3(3,2)中,线段MN的“关联点”有 ;(2)如果点P在直线yx+1上,且点P是线段MN的“关联点”
13、,求点P的横坐标x的取值范围;(3)如果点P在以O(1,1)为圆心,r为半径的O上,且点P是线段MN的“关联点”,直接写出O半径r的取值范围20(2019平谷区一模)如图,点P是所对弦AB上一动点,点Q是与弦AB所围成的图形的内部的一定点,作射线PQ交于点C,连接BC已知AB6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,B,C两点间的距离为y2cm(当点P与点A重合时,x的值为0)小平根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究下面是小平的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值
14、;x/cm0123456y1/cm5.374.062.83m3.864.835.82y2/cm2.683.574.905.545.725.795.82经测量m的值是(保留一位小数)(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当BCP为等腰三角形时,AP的长度约为 cm21(2019房山区一模)如图,AB为O直径,点C是O上一动点,过点C作O直径CD,过点B作BECD于点E已知AB6cm,设弦AC的长为xcm,B,E两点间的距离为ycm(当点C与点A或点B重合时,y的值为0)小冬根据学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京市2019年中考数学真题与模拟题分类汇编 专题14 图形的性质之解答题345道题原卷版 北京市 2019 年中 数学 模拟 分类 汇编 专题 14 图形 性质 解答 45 道题 原卷版
链接地址:https://www.77wenku.com/p-90800.html