2020年高考理科数学《不等式选讲》题型归纳与训练
《2020年高考理科数学《不等式选讲》题型归纳与训练》由会员分享,可在线阅读,更多相关《2020年高考理科数学《不等式选讲》题型归纳与训练(6页珍藏版)》请在七七文库上搜索。
1、 2020年高考理科数学不等式选讲题型归纳与训练【题型归纳】题型一 解绝对值不等式 例1、设函数f(x)|x1|x2|.(1)解不等式f(x)3;(2)若f(x)a对xR恒成立,求实数a的取值范围.【答案】(1)(,0)(3,);(2)(,1).【解析】(1)因为f(x)|x1|x2|所以当x1时,32x3,解得x0;当1x2时,f(x)3无解;当x2时,2x33,解得x3.所以不等式f(x)3的解集为(,0)(3,).(2)因为f(x)所以f(x)min1.因为f(x)a恒成立,【易错点】如何恰当的去掉绝对值符号【思维点拨】用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对
2、值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.题型二 利用绝对值的几何意义或图象解不等式例2、(1)若不等式|x1|x2|a2a2对任意实数x恒成立,则实数a的取值范围是_【答案】(1).【解析】(1)|x1|x2|(x1)(x2)|3,a2a23,解得a.即实数a的取值范围是.【易错点】绝对值的几何意义和如何把恒成立问题转化为最值问题【思维点拨】解含参数的不等式存在性问题,只要求出存在满足条件的x即可;不等式的恒成立问题,可转化为最值问题,即f(x)f(x)max,f(x)a恒成立acd,则;(2)是|ab|cd得()2()2.因此.(2)若
3、|ab|cd|,则(ab)2(cd)2,即(ab)24abcd.由(1)得.若,则()2()2,即ab2cd2.因为abcd,所以abcd.于是(ab)2(ab)24ab(cd)24cd(cd)2.因此|ab|是|ab|cd|的充要条件【易错点】不等式的恒等变形.【思维点拨】分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆【巩固训练】题型一 解绝对值不等式 1.不等式|x1|x2|5的解集为_【答案】x|x3或x2.【解析】原不等式等价于或或解得x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式选讲 2020 年高 理科 数学 不等式 题型 归纳 训练
链接地址:https://www.77wenku.com/p-91851.html