2020年高考文科数学《极坐标系与参数方程》题型归纳与训练
《2020年高考文科数学《极坐标系与参数方程》题型归纳与训练》由会员分享,可在线阅读,更多相关《2020年高考文科数学《极坐标系与参数方程》题型归纳与训练(13页珍藏版)》请在七七文库上搜索。
1、2020年高考文科数学极坐标系与参数方程题型归纳与训练【题型归纳】题型一 极坐标与直角坐标的互化例1 (1)以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,求线段的极坐标方程(2)在极坐标系中,曲线和的方程分别为和.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,求曲线和交点的直角坐标【答案】(1). (2) 【解析】(1) 化成极坐标方程为即. ,线段在第一象限内(含端点), (2)因为,由,得,所以曲线的直角坐标方程为.由,得曲线的直角坐标方程为.由得,故曲线与曲线交点的直角坐标为【易错点】容易忽略参数范围【思维点拨】(1)极坐标与直角坐标互化的前提条件:极点
2、与原点重合;极轴与轴的正半轴重合;取相同的单位长度(2)直角坐标方程化为极坐标方程比较容易,只要运用公式直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如,的形式,进行整体代换题型二 伸缩变换及求曲线的极坐标方程例1 将圆上每一点的横坐标保持不变,纵坐标变为原来的倍,得曲线.(1)写出曲线的方程;(2)设直线:与的交点为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程【答案】(1)曲线C的方程为.(2).【解析】(1)设为圆上的点,在已知变换下变为曲线上的点,依题意,得,由得,即曲线的方程为.(2)由解得或不妨
3、设,则线段的中点坐标为,所求直线斜率为,于是所求直线方程为,化为极坐标方程,并整理得,即.【易错点】伸缩变换易变错【思维点拨】求曲线的极坐标方程的步骤:(1)建立适当的极坐标系,设是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径和极角之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程题型三 参数方程与普通方程的互化例1 已知直线的参数方程为(参数),圆的参数方程为(参数),求直线被圆所截得的弦长【答案】【解析】由,消参数后得普通方程为,由,消参数后得普通方程为,显然圆心坐标为,半径为.由于圆心到直线的距离为,根据勾股定理,所求弦长为.【易错点】参数
4、方程化普通方程.【思维点拨】本题考查直线和圆的联立问题,就是把参数方程转化为直角坐标系下的普通方程.例2在直角坐标系中,已知椭圆的参数方程为(为参数),直线的参数方程为(参数),直线垂直于直线且过椭圆的右焦点.(1)求椭圆的普通方程和直线的参数方程;(2)直线交椭圆于、两点,求【答案】(1)椭圆的方程为,直线的参数方程为(为参数).(2).【解析】(1)椭圆中的,椭圆的方程为,直线的斜率为,直线的斜率为,直线的参数方程为(为参数)(2) 将直线的参数方程(为参数)代入椭圆的方程中得到关于的一元二次方程,设是所对应的参数,则根据参数的几何意义可知:【易错点】直线参数方程的表示要用标准形式,参数几
5、何意义及参数的符号【思维点拨】线段长度与参数几何意义之间的联系考点四 极坐标方程与参数方程的综合应用例1在直角坐标系中,直线:,圆:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系(1)求,的极坐标方程;(2)若直线的极坐标方程为,设与的交点为,求的面积【答案】(1)的极坐标方程为,的极坐标方程为.(2)【解析】(1)因为,所以的极坐标方程为,的极坐标方程为.(2)将代入,得,解得.故,即.由于的半径为1,所以为等腰直角三角形,所以的面积为.【易错点】第二问求三角形面积易化为直角坐标求点,求距离求面积,计算量大易错.【思维点拨】(1)已知直角坐标方程化极坐标系方程直接运用公式带入化简即可;(2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极坐标系与参数方程 2020 年高 文科 数学 坐标系 参数 方程 题型 归纳 训练
链接地址:https://www.77wenku.com/p-91867.html