《2019-2020学年浙江省金华市义乌市七年级(上)第一次月考数学试卷(含详细解答)》由会员分享,可在线阅读,更多相关《2019-2020学年浙江省金华市义乌市七年级(上)第一次月考数学试卷(含详细解答)(15页珍藏版)》请在七七文库上搜索。
1、2019-2020学年浙江省金华市义乌市七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1(3分)下列各对数中,互为相反数的是()A和0.2B和C1.75和D2和(2)2(3分)0是()A整数B负整数C正有理数D负有理数3(3分)学校、家、书店座落在一条南北走向的大街上,学校在家南边20米,书店在家北边10米,张明从家里出发,向北走了50米,又向南走了70米,此时张明的位置在()A在家B在学校C在书店D不在上述地方4(3分)在下列选项中,具有相反意义的量是()A收入20元与支出30元B上升了6米和后退了7米C向东走3千米与向南走4千米D足球比赛胜5场与平2场5(3分)下列四个数
2、中,在2到0之间的数是()A1B3C1D36(3分)数轴上到数2所表示的点的距离为4的点所表示的数是()A6B6C2D6或27(3分)下列各组数从小到大排列正确的是()A653B365C563D6358(3分)下列关系一定成立的是()A若|a|b|,则abB若|a|b,则abC若|a|b,则abD若ab,则|a|b|9(3分)在1,2,3,99,100这100个数中,任意加上“+”或“”,相加后的结果一定是()A奇数B偶数C0D不确定10(3分)依次观察如图三个图形,并判断照此规律从左到右第2019个图形是()ABCD二、填空题(每小题3分,总共18分)11(3分)如果收入1000元表示为+1
3、000元,则800元表示 12(3分)用“”、“”、“”号填空: 13(3分)|3|的相反数是 14(3分)观察下列各数,按照某种规律在横线上填上一个适当的数, 15(3分)如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MNNPPR1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|2,则原点是 (填入M、N、P、R中的一个或几个)16(3分)(1)如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,
4、当点N移动到点A时,点M所对应的数为5(单位:cm)则木棒MN长为 cm(2)一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你借助上述方法,写出小民爷爷到底是 岁三、解答题(共8题,总共52分)17(6分)把下列各数填在相应的大括号内:8,0.82,3.14,2,0,100,1,正有理数集合: 负分数集合: 自然数集合: 18(6分)计算:(1)|12|+|+2|(2)5(5)(3)19(6分)计算:(1)(14)5+(12)(34)
5、(2)()()+(+)+(+8.5)20(6分)已知有理数a、b在数轴上的位置如图所示,试用“”号按从小到大的顺序,将数a、b、0、a、b连接起来21(6分)小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,乘积的最大值为 ;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,商的最小值为 ;(3)从中取出4张卡片,用学过的运算方法,使结果为24写出运算式子(写出一种即可)算24的式子为 22(6分)某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正,某天从A地出发到收工时
6、,行走记录为(单位:千米):+15、2、+5、1、3、2、+4、5(1)计算收工时,检修小组在A地的哪一边,距A地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工检修小组耗油多少升?23(8分)如图,一只甲虫在55的方格(每小格边长为1)上沿着网格线运动它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负如果从A到B记为:AB(+1,+4),从B到A记为:BA(1,4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)AC( , ),BC( , ),CD ( , )
7、;(2)若这只甲虫的行走路线为ABCD,请计算该甲虫走过的最少路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,1),(2,+3),(1,2),请在图中标出P的位置24(8分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB|ab|利用数形结合思想回答下列问题:数轴上表示1和3两点之间的距离是 数轴上表示x和1的两点之间的距离表示为 若x表示一个有理数,且4x2,则|x2|+|x+4| 若x表示一个有理数,且|x2|+|x+4|8,则有理数x的值是 2019
8、-2020学年浙江省金华市义乌市七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1(3分)下列各对数中,互为相反数的是()A和0.2B和C1.75和D2和(2)【分析】注意相反数的特征:绝对值相等但是符号不同的数是互为相反数【解答】解:在和0.2中,它们的绝对值不等;在和中,它们互为倒数;1.75的相反数为;在2和(2)中,(2)2,它们相等故选:C【点评】注意相反数和倒数概念的区别2(3分)0是()A整数B负整数C正有理数D负有理数【分析】根据0既不是正数也不是负数的特殊性作答【解答】解:0是整数,所以A正确;0不是正数,所以C错误;0不是负数,所以B、D错
9、误故选A【点评】本题主要考查0的特殊性质:0既不是正数,也不是负数,这就要求学生在平时的学习中熟练记忆3(3分)学校、家、书店座落在一条南北走向的大街上,学校在家南边20米,书店在家北边10米,张明从家里出发,向北走了50米,又向南走了70米,此时张明的位置在()A在家B在学校C在书店D不在上述地方【分析】可规定家的位置为0,向北走为正,向南走为负,把所得数相加即可得到相应位置【解答】解:规定家的位置为0,向北走为正,向南走为负,则050+7020米,张明的位置在家南边20米处即在学校,故选:B【点评】本题考查了数轴的性质,解决本题的关键是确定原点和正负方向4(3分)在下列选项中,具有相反意义
10、的量是()A收入20元与支出30元B上升了6米和后退了7米C向东走3千米与向南走4千米D足球比赛胜5场与平2场【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示【解答】解:A、收入20元与支出30元是相反意义的量,故A正确;故选:A【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量5(3分)下列四个数中,在2到0之间的数是()A1B3C1D3【分析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断出在2到0之间的数是哪个即可【解答】解:根据有理数比较大小的方法,可得210
11、321030故在2到0之间的数是1故选:A【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小6(3分)数轴上到数2所表示的点的距离为4的点所表示的数是()A6B6C2D6或2【分析】数轴上到数2所表示的点的距离为4的点所表示的数有两个,即一个在2的左边,一个在2的右边,所以分别是6或2【解答】解:若该点在2的左边,则该点为:246;若该点在2的右边,则该点为2+42故选:D【点评】主要考查了数轴,要注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉一种情况把数和点对应起来,也就
12、是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想7(3分)下列各组数从小到大排列正确的是()A653B365C563D635【分析】分别在数轴上标出各数,再按照从左到右的顺序用“”号连接即可【解答】解:如图所示:故从小到大排列为:653故选:A【点评】本题考查的是有理数的大小比较,能利用数形结合比较出各数的大小是解答此题的关键8(3分)下列关系一定成立的是()A若|a|b|,则abB若|a|b,则abC若|a|b,则abD若ab,则|a|b|【分析】根据绝对值的定义进行分析即可得出正确结论【解答】解:选项A、B、C中,a
13、与b的关系还有可能互为相反数故选D【点评】绝对值相等的两个数的关系是相等或互为相反数9(3分)在1,2,3,99,100这100个数中,任意加上“+”或“”,相加后的结果一定是()A奇数B偶数C0D不确定【分析】认真审题不难发现:这从1到100一共100个数,其中50个奇数、50个偶数,所以任意加上“+”或“”,相加后的结果一定是偶数【解答】解:这从1到100一共100个数,相邻两个数之和或之差都为奇数,所以可以得到50组奇数,这50组奇数相加一定为偶数故选:B【点评】认真审题,找出规律,是解决此类问题的关键所在10(3分)依次观察如图三个图形,并判断照此规律从左到右第2019个图形是()AB
14、CD【分析】根据题目中给出的图形,可知每五个一个循环,空白的大三角形按照顺时针旋转,从而可以得到从左到右第2019个图形是选项中的哪个图形,本题得以解决【解答】解:由图可知,每连续的五个为一组,也就是五个一循环,201954034,故选:A【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化特点,利用数形结合的思想解答二、填空题(每小题3分,总共18分)11(3分)如果收入1000元表示为+1000元,则800元表示支出800元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示【解答】解:“正”和“负”相对,所以如果收入1000元表示为+1000元
15、,则800元表示支出800元【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量12(3分)用“”、“”、“”号填空:【分析】先计算得到|,|,然后根据负数的绝对值越大,这个数越小进行大小比较【解答】解:|,|,故答案为【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小13(3分)|3|的相反数是3【分析】根据绝对值定义得出|3|3,再根据相反数的定义:只有符号相反的两个数互为相反数作答【解答】解:|3|3,3的相反数是3,故答案为:3【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中14(
16、3分)观察下列各数,按照某种规律在横线上填上一个适当的数,【分析】由题中可以得出规律:分子分别等于各自的序号,分母分别是以2为底,序号加1为指数如:422,823,1624,3225,6426,且序号是奇数是为负数,序号为偶数时是正数,所以可以推出最后一项是【解答】解:由题中一列数可以得出规律:分子等于各自的序号即:1,2,3,4,5,6;分母则是:422,823,1624,3225,6426,12827;序号是奇数是为负数,序号为偶数时是正数,由此可得:要求的那个应该是:【点评】本题属于规律型的,分子、分母分别呈现不同的规律,分子等各自的序号,分母则是等比为2的等比数列,奇数项为负数,偶数项
17、是正数15(3分)如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MNNPPR1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|2,则原点是N或P(填入M、N、P、R中的一个或几个)【分析】根据数轴判断出a、b之间的距离小于3,且大于1,然后根据绝对值的性质解答即可【解答】解:MNNPPR1,|MN|NP|PR|1,|MR|3;当原点在N或P点时,1|a|+|b|3,又因为|a|+|b|2,所以原点可能在N或P点;当原点在M或R点时,|a|+|b|2,所以原点不可能在M或R点;综上所述,原点应是在N或P点故答案为:N或P【点评】此题考查了数轴的定
18、义和绝对值的意义解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解16(3分)(1)如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5(单位:cm)则木棒MN长为5cm(2)一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你借助上述方法,写出小民爷爷到底是70岁【分析】(1)设木棒MN长为xcm,根据“有一根木棒
19、MN放置在数轴上,它的两端M、N分别落在点A、B将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5”,结合数轴,得到关于x的一元一次方程,解之即可,(2)设小民与爷爷的年龄差为x岁,类比(1),则x相当于(1)中的MN的长,“我若是你现在这么大,你还要40年才出生”,则N到A,可知此时M点表示的数是40;“你若是我现在这么大,我已经是老寿星了,125岁了”,则此时N对应的数是125,仿照(1),列方程可解得x,从而可推得爷爷的年龄【解答】解:(1)设木棒MN长为xcm,根据题意得:3x205,解得:x5,故答案为:5,(2)设小民与爷爷的年
20、龄差为x岁,则x相当于(1)中的MN的长,根据题意得:3x125(40)解得:x55,40+55+5570(岁),即小民爷爷70岁,故答案为70【点评】本题考查了一元一次方程在数轴问题中的应用,并由此延伸到年龄问题中,读懂(1)问中的模型思想,同时明确年龄问题的年龄差不变的特点,是解题的关键三、解答题(共8题,总共52分)17(6分)把下列各数填在相应的大括号内:8,0.82,3.14,2,0,100,1,正有理数集合:8,3.14,1负分数集合:0.82,自然数集合:8,0,1【分析】根据正有理数、负分数、自然数的意义直接把数据分类即可【解答】解:正有理数集合:8,3.14,1负分数集合:0
21、.82,自然数集合:8,0,1,故答案为:;8,3.14,1;0.82,;【点评】此题考查有理数的分类,注意解题技巧,正整数、负整数在对应的正数、负数里面找,注意是无理数18(6分)计算:(1)|12|+|+2|(2)5(5)(3)【分析】(1)先化简绝对值,再利用加法法则计算即可(2)减法转化为加法即可解决问题(3)通分后利用加法法则计算即可【解答】解:(1)|12|+|+2|12+214(2)5(5)5+510(3)+【点评】本题考查有理数的加法法则,解题的关键是熟练掌握加法法则,属于中考常考题型19(6分)计算:(1)(14)5+(12)(34)(2)()()+(+)+(+8.5)【分析
22、】利用有理数的加法法则计算即可【解答】解:(1)(14)5+(12)(34)34(14+5+12)3(2)()()+(+)+(+8.5)0+8.59【点评】本题考查有理数的加法法则,解题的关键是熟练掌握加法法则,属于中考常考题型20(6分)已知有理数a、b在数轴上的位置如图所示,试用“”号按从小到大的顺序,将数a、b、0、a、b连接起来【分析】首先在数轴上表示出a、b、0、a、b,再根据数轴上的数左边的总比右边的小用“”号按从小到大的顺序连接起来即可【解答】解:如图所示:,用“”号按从小到大的顺序连接起来为:ba0ab【点评】此题主要考查了有理数的比较大小,关键是掌握当数轴方向朝右时,右边的数
23、总比左边的数大21(6分)小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,乘积的最大值为15;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,商的最小值为;(3)从中取出4张卡片,用学过的运算方法,使结果为24写出运算式子(写出一种即可)算24的式子为03(3)+(5)24(答案不唯一)【分析】(1)找出两张卡片,使其积最大即可;(2)找出两张卡片,使其商最小即可;(3)找出四张卡片,利用24点游戏规律列出算式即可【解答】解:(1)抽取的2张卡片是3、5,乘积的最大值为15;(2)抽取的2张卡片是5、3,商的最小值
24、;(3)抽取的4张卡片是3、5、3、0,算式为03(3)+(5)24(答案不唯一)故答案为:(1)15;(2);(3)03(3)+(5)24(答案不唯一)【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键22(6分)某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正,某天从A地出发到收工时,行走记录为(单位:千米):+15、2、+5、1、3、2、+4、5(1)计算收工时,检修小组在A地的哪一边,距A地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工检修小组耗油多少升?【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以行驶路程,可得答案【解答】解:(1
25、)152+5132+12+4511,答:检修小组在A地东边,距A地11千米;(2)(15+|2|+5+|1|+|3|+|2|+12+4+|5|)0.414.8(升),答:出发到收工检修小组耗油14.8升【点评】本题考查了正数和负数,利用有理数的运算是解题关键23(8分)如图,一只甲虫在55的方格(每小格边长为1)上沿着网格线运动它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负如果从A到B记为:AB(+1,+4),从B到A记为:BA(1,4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)AC(+3,+4),BC(+2,0),CD (+1,2);(2
26、)若这只甲虫的行走路线为ABCD,请计算该甲虫走过的最少路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,1),(2,+3),(1,2),请在图中标出P的位置【分析】(1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解【解答】解:(1)AC(+3,+4),BC(+2,0),CD(+1,2);(2)1+4+2+1+210;(3)点P如图所示【点评】本题考查了坐标确定位置,读懂题目信息,理解行走路线的记录方法是解题的关键24(8分)点A、B在数轴上分别表示有理数a、b,A
27、、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB|ab|利用数形结合思想回答下列问题:数轴上表示1和3两点之间的距离是2数轴上表示x和1的两点之间的距离表示为|x+1|若x表示一个有理数,且4x2,则|x2|+|x+4|6若x表示一个有理数,且|x2|+|x+4|8,则有理数x的值是5或3【分析】根据题意和题目中的数据可以求得数轴上表示1和3两点之间的距离;根据题意可以求得数轴上表示x和1的两点之间的距离;根据4x2,可以求得|x2|+|x+4|的值;根据题意,利用分类讨论的方法可以求得|x2|+|x+4|8时的x的值【解答】解:|31|2,故答案为:2;数轴上表示x和1的两点之间的距离表示为:|x(1)|x+1|,故答案为:|x+1|;4x2,|x2|+|x+4|2x+x+46,故答案为:6;当x2时,|x2|+|x+4|x2+x+48,得x3,当4x2时,|x2|+|x+4|2x+x+468,当x4时,|x2|+|x+4|2xx48,得x5,故答案为:2,|x+1|,6;5或3【点评】本题考查数轴、绝对值,解答本题的关键是明确题意,找出所求问题需要的条件,利用数轴和绝对值的知识解答
链接地址:https://www.77wenku.com/p-93046.html