专题08 圆周运动模型(3)-高考物理模型法之过程模型法(解析版)2020年高考物理
《专题08 圆周运动模型(3)-高考物理模型法之过程模型法(解析版)2020年高考物理》由会员分享,可在线阅读,更多相关《专题08 圆周运动模型(3)-高考物理模型法之过程模型法(解析版)2020年高考物理(19页珍藏版)》请在七七文库上搜索。
1、专题08 力学中圆周运动模型(3)模型界定本模型只局限于力学范围内的圆周运动,(一)讨论圆周运动中的传动及水平面内的匀速圆周运动,(二)讨论竖直平面内的圆周运动及天体的圆周运动问题.本模型不涉及电磁学范围内的圆周运动,电磁学范围内的圆周运动另有等效重力场、动态圆模型等进行专题研究.模型破解3.圆周运动中的动力学问题(ii)竖直平面内的圆周运动圆周运动中的速度在向心加速度的表达式中,v是物体相对圆心的瞬时速度,在圆心静止时才等于物体的对地速度变速圆周运动中的向心力在变速圆周运动中,向心力不是物体所受合外力,是物体在半径方向上的合力.竖直平面内圆周运动的类型竖直平面内的圆周运动分为匀速圆周运动和变
2、速圆周运动两种常见的竖直平面内的圆周运动是物体在轨道弹力(或绳、杆的弹力)与重力共同作用下运动,多数情况下弹力(特别是绳的拉力与轨道的弹力)方向与运动方向垂直对物体不做功,而重力对物体做功使物体的动能不断变化,因而物体做变速圆周运动若物体运动过程中,还受其他力与重力平衡,则物体做匀速圆周运动变速圆周运动中的正交分解应用牛顿运动定律解答圆周运动问题时,常采用正交分解法.以物体所在的位置为坐标原点,建立相互垂直的两个坐标轴:一个沿半径(法线)方向,此方向上的合力即向心力改变物体速度的方向;另一个沿切线方向,此方向的合力改变物体速度的大小处理竖直平面内圆周运动的方法在物体从一点运动至另点的过程中速度
3、之间的联系由能量观点(动能定理、机械能守恒定律)列方程,在物体经过圆周上某一点时速度与外力之间的联系由牛顿运动定律列方程,两类方程相结合是解决此类问题的有效方法竖直平面内变速圆周运动的最高点与最低点例1.如图所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则例1题图A.该盒子做匀速圆周运动的周期一定小于B.该盒子做匀速圆周运动的周期一定等于C.盒子在最低点时盒子与小球之间的作用力大小可能小于2mgD.盒子在最低点时盒子与小球之间的作用力大小可能
4、小于2mg【答案】例.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。如图(a)所示,曲线上A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径叫做A点的曲率半径。现将一物体沿与水平面成角的方向以速度v0抛出,如图(b)所示。则在其轨迹最高点P处得曲率半径是例题图A B C D 【答案】【解析】物体做斜抛运动,运动中只受重力作用,到达最高点时速度v沿水平方向,大小等于v0cos,因轨迹上点的曲率圆圆心在点正下方,由牛顿第二定律,故有,正确模型演练1.如图所示,物体A放在粗糙板上
5、随板一起在竖直平面内沿逆时针方向做匀速圆周运动,且板始终保持水平,位置、在同一水平高度上,则练1图A.物体在位置、时受到的弹力都大于重力B.物体在位置、时受到的弹力都小于重力C.物体在从位置运动到位置的过程中受到的摩擦力先增大后减小D.物体在从位置运动到位置的过程中受到的摩擦力先减小后增大【答案】【解析】:如图所示,练1答图 (I)轻绳模型如图1所示,此模型包括沿圆形轨道内侧运动的小球,其共同特征是在最高点时均无支撑.图1 图2小球能通过最高点的条件如图2所示,在最高点A:、即小球能过最高点A的临界条件、小球能做完整圆周运动时在最低点B满足的条件小球不脱离轨道在最低点B满足的条件或小球沿圆周运
6、动过程中绳中张力变化情况在最低点绳中张力最大,在最高点时绳中张力最小,此两点处绳中张力大小差值恒定,即.小球从圆周的最低点运动至最高点的过程中,绳中张力单调减小.变速圆周上的最高点与最低点小球位于最高点处时:动能最小、势能最大、绳中张力最小,小球在此处最易脱轨,小球在此处不脱轨是保证小球做完整圆周运动的充要条件.小球位于最高点处时:动能最大、势能最小、绳中张力最大,绳在此处最易断裂.圆周运动中的能量小球沿圆周运动过程中只受到重力与绳的拉力,运动中机械守恒.但满足能量守恒的过程不一定能够发生,需注意小球脱离轨道后做斜上抛运动,动能不能全部转化为重力势能.例.过山车是游乐场中常见的设施。下图是一种
7、过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径、。一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,A、B间距m。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位数字。试求(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点
8、与起点的距离。例3题图【答案】().().m()当时, ;当时,【解析】(1)设小于经过第一个圆轨道的最高点时的速度为v1根据动能定理 小球在最高点受到重力mg和轨道对它的作用力F,根据牛顿第二定律 由得 (2)设小球在第二个圆轨道的最高点的速度为v2,由题意 由得 (3)要保证小球不脱离轨道,可分两种情况进行讨论:I轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v3,应满足 由得 II轨道半径较大时,小球上升的最大高度为R3,根据动能定理 解得 为了保证圆轨道不重叠,R3最大值应满足 解得 R3=27.9m 当时,小球最终焦停留点与起始点A的距离为L,则 例4.如图所示,质量为
9、m的小球用细绳拴住,在竖直平面内做圆周运动,已知小球运动到最高点时对绳的拉力为mg,则小球运动到最低点时对绳的拉力为( )例4题图A3mgB5mgC7mgD9mg【答案】【解析】在最高点:,在最低点:由机械能守恒定律:;由此可得正确选项为C例5.如图所示,半径r= 05m的光滑圆轨道被竖直固定在水平地面上,圆轨道最低处有一小球(小球的半径比r小很多)。现给小球一个水平向右的初速度v0,要使小球不脱离轨道运动,v0应满足( )例5题图Av05m/s Bv02m/sCv0m/s Dv0m/s【答案】守恒有,联立可解得,答案为D。例6.如图所示,质量为m的小球,由长为l的细线系住,细线的另一端固定在
10、A点,AB是过A的竖直线,E为AB上的一点,且AE=0.5l,过E作水平线EF,在EF上钉铁钉D,若线能承受的最大拉力是9mg,现将小球拉直水平,然后由静止释放,若小球能绕钉子在竖直面内做圆周运动,不计线与钉子碰撞时的能量损失求钉子位置在水平线上的取值范围ABEDlmF例6题图【答案】lxl 【解析】这是一个圆周运动与机械能两部分知识综合应用的典型问题题中涉及两个临界条件:一是线承受的最大拉力不大于9mg;另一个是在圆周运动的最高点的瞬时速度必须不小于(r是做圆周运动的半径)设在D点绳刚好承受最大拉力,设DE=x1,则:AD=悬线碰到钉子后,绕钉做圆周运动的半径为:r1=lAD= l当小球落到
11、D点正下方时,绳受到的最大拉力为F,此时小球的速度v,由牛顿第二定律有:Fmg= 结合F9mg可得:8mg 由机械能守恒定律得:mg (+r1)=mv12即:v2=2g (+r1) 由式联立解得:x1l 随着x的减小,即钉子左移,绕钉子做圆周运动的半径越来越大转至最高点的临界速度也越来越大,但根据机械能守恒定律,半径r越大,转至最高点的瞬时速度越小,当这个瞬时速度小于临界速度时,小球就不能到达圆的最高点了设钉子在G点小球刚能绕钉做圆周运动到达圆的最高点,设EG=x2,如图,例6答图则:AG=r2=lAG= l 在最高点:mg 由机械能守恒定律得:mg (r2)=mv22 由联立得:x2l 在水
12、平线上EF上钉子的位置范围是:lxl 例7.一小球以初速度v0竖直上抛,它能到达的最大高度为H,下列几种情况中,哪种情况小球不可能达到高度H(忽略空气阻力) 例7题图A以初速v0沿光滑斜面向上运动(图a)B以初速v0沿光滑的抛物线轨道从最低点向上运动(图b)C以初速v0沿半径为R的光滑圆轨道从最低点向上运动(图c,)D以初速v0沿半径为R的光滑圆轨道从最低点向上运动(图d、RH)【答案】有水平方向上的速度,物体的动能不能全部重力势能,则其上升的高度必小于H,答案为C.模型演练2.光滑的水平轨道AB与半径为R的光滑的半圆形轨道BCD相切于B点,其中圆轨道在竖直平面内,B为最低点,D为最高点。一质
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题08 圆周运动模型3-高考物理模型法之过程模型法解析版2020年高考物理 专题 08 圆周运动 模型 高考 物理 过程 解析 2020 年高
链接地址:https://www.77wenku.com/p-93866.html