专题2.4幂函数与二次函数 2020年高考数学一轮复习对点提分(文理科通用)解析版
《专题2.4幂函数与二次函数 2020年高考数学一轮复习对点提分(文理科通用)解析版》由会员分享,可在线阅读,更多相关《专题2.4幂函数与二次函数 2020年高考数学一轮复习对点提分(文理科通用)解析版(16页珍藏版)》请在七七文库上搜索。
1、第二篇 函数及其性质专题2.04 幂函数与二次函数【考试要求】1.通过具体实例,结合yx,y,yx2,y,yx3的图象,理解它们的变化规律,了解幂函数;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题【知识梳理】1.幂函数(1)幂函数的定义一般地,形如yx的函数称为幂函数,其中x是自变量,为常数.(2)常见的5种幂函数的图象(3)幂函数的性质幂函数在(0,)上都有定义;当0时,幂函数的图象都过点(1,1)和(0,0),且在(0,)上单调递增;当0)yax2bxc(a0,当时,恒有f(x)0时,幂函数yxn在(0,)上是增函数.()(3)二次函数yax2bxc(xR
2、)不可能是偶函数.()(4)二次函数yax2bxc(xa,b)的最值一定是.()【答案】(1)(2)(3)(4)【解析】(1)由于幂函数的解析式为f(x)x,故y2x不是幂函数,(1)错.(3)由于当b0时,yax2bxcax2c为偶函数,故(3)错.(4)对称轴x,当小于a或大于b时,最值不是,故(4)错.【教材衍化】2.(必修1P79T1改编)已知幂函数f(x)kx的图象过点,则k()A. B.1 C. D.2【答案】C【解析】因为f(x)kx是幂函数,所以k1.又f(x)的图象过点,所以,所以,所以k1.3.(必修1P44A9改编)若函数f(x)4x2kx8在1,2上是单调函数,则实数k
3、的取值范围是_.【答案】(,816,)【解析】由于函数f(x)的图象开口向上,对称轴是x,所以要使f(x)在1,2上是单调函数,则有1或2,即k8或k16.【真题体验】4.(2016全国卷)已知a2,b3,c25,则()A.bac B.abcC.bca D.caab.5.(2019衡水中学月考)若存在非零的实数a,使得f(x)f(ax)对定义域上任意的x恒成立,则函数f(x)可能是()A.f(x)x22x1 B.f(x)x21C.f(x)2x D.f(x)2x1【答案】A【解析】由存在非零的实数a,使得f(x)f(ax)对定义域上任意的x恒成立,可得函数图象的对称轴为x0.只有选项A中,f(x
4、)x22x1关于x1对称.6.(2019菏泽检测)幂函数f(x)(m24m4)xm26m8在(0,)上为增函数,则m的值为_.【答案】1【解析】由题意知解得m1.【考点聚焦】考点一幂函数的图象和性质【例1】 (1)幂函数yf(x)的图象过点(4,2),则幂函数yf(x)的图象是()(2)若a,b,c,则a,b,c的大小关系是()A.abc B.cabC.bca D.bac【答案】(1)C(2)D【解析】(1)设幂函数的解析式为yx,因为幂函数yf(x)的图象过点(4,2),所以24,解得.所以y,其定义域为0,),且是增函数,当0xb,因为y是减函数,所以ac,所以bac.【规律方法】1.对于
5、幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x1,y1,yx所分区域.根据0,01的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.【训练1】 (1)(2019洛阳二模)已知点在幂函数f(x)(a1)xb的图象上,则函数f(x)是()A.奇函数 B.偶函数C.定义域内的减函数 D.定义域内的增函数(2)(2018上海卷)已知,.若幂函数f(x)x为奇函数,且在(0,)上递减,则_.【答案】(1)A(2)1【解析】(1)由题意得a11,且ab,因此a2且b1.故f(x)x1是奇函数,但在定义域(,0
6、)(0,)不是单调函数.(2)由题意知可取1,1,3.又yx在(0,)上是减函数,0且a1)与二次函数y(a1)x2x在同一坐标系内的图象可能是()(2)设函数f(x)x2xa(a0),已知f(m)0 D.f(m1)0【答案】(1)A(2)C【解析】(1)若0a1,则yloga x在(0,)上是增函数,y(a1)x2x图象开口向上,且对称轴在y轴右侧,因此B项不正确,只有选项A满足.(2)因为f(x)的对称轴为x,f(0)a0,所以f(x)的大致图象如图所示.由f(m)0,得1m0,所以f(m1)f(0)0.【规律方法】1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶
7、点,另两个点是抛物线上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.【训练3】 一次函数yaxb与二次函数yax2bxc在同一坐标系中的图象大致是()【答案】C【解析】A中,由一次函数yaxb的图象可得a0,此时二次函数yax2bxc的图象应该开口向上,A错误;B中,由一次函数yaxb的图象可得a0,b0,此时二次函数yax2bxc的图象应该开口向上,对称轴x0,B错误;C中,由一次函数yaxb的图象可得a0,b0,此时二次函数yax2bxc的图象应该开
8、口向下,对称轴x0,C正确;D中,由一次函数yaxb的图象可得a0,bxk在区间3,1上恒成立,试求k的取值范围.【答案】见解析【解析】(1)由题意知解得所以f(x)x22x1,由f(x)(x1)2知,函数f(x)的单调递增区间为1,),单调递减区间为(,1.(2)由题意知,x22x1xk在区间3,1上恒成立,即kx2x1在区间3,1上恒成立,令g(x)x2x1,x3,1,由g(x)知g(x)在区间3,1上是减函数,则g(x)ming(1)1,所以k0时,图象过原点和(1,1)点,在第一象限的部分“上升”;0时,图象不过原点,经过(1,1)点在第一象限的部分“下降”,反之也成立.2.求二次函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-94866.html