专题1.2 常用逻辑用语 2020年高考数学一轮复习对点提分(文理科通用)(原卷版)
《专题1.2 常用逻辑用语 2020年高考数学一轮复习对点提分(文理科通用)(原卷版)》由会员分享,可在线阅读,更多相关《专题1.2 常用逻辑用语 2020年高考数学一轮复习对点提分(文理科通用)(原卷版)(12页珍藏版)》请在七七文库上搜索。
1、第一篇 集合与不等式专题1.02常用逻辑用语【考试要求】1.通过对典型数学命题的梳理,理解必要条件的意义,理解性质定理与必要条件的关系;理解充分条件的意义,理解判定定理与充分条件的关系;理解充要条件的意义,理解数学定义与充要条件的关系;2.通过已知的数学实例,理解全称量词与存在量词的意义;3.能正确使用存在量词对全称命题进行否定;能正确使用全称量词对特称命题进行否定.【知识梳理】1.充分条件、必要条件与充要条件的概念若pq,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件pq且qpp是q的必要不充分条件pq且qpp是q的充要条件pqp是q的既不充分也不必要条件pq且qp2.全称量词与
2、存在量词(1)全称量词:短语“所有的”、“任意一个”等在逻辑中通常叫做全称量词,用符号“”表示.(2)存在量词:短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在量词,用符号“”表示.3.全称命题和特称命题(命题p的否定记为p,读作“非p”) 名称形式全称命题特称命题结构对M中的任意一个x,有p(x)成立存在M中的一个x0,使p(x0)成立简记xM,p(x)x0M,p(x0)否定x0M,p(x0)xM,p(x)【微点提醒】1.区别A是B的充分不必要条件(AB且BA),与A的充分不必要条件是B(BA且AB)两者的不同.2.A是B的充分不必要条件B是A的充分不必要条件.3.含有一个量词的命题的
3、否定规律是“改量词,否结论”.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)若已知p:x1和q:x1,则p是q的充分不必要条件.()(2)“长方形的对角线相等”是特称命题.()(3)当q是p的必要条件时,p是q的充分条件.()(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.()【教材衍化】2.(选修21P26A3改编)命题“xR,x2x0”的否定是()A.x0R,x02x00 B.x0R,x02x00C.xR,x2x0 D.xR,x2x2n,则p为()A.nN,n22n B.nN,n22nC.nN,n22n D.nN,n22n5.(2018天津卷)设xR,则“”是
4、“x31是ff(1)4”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件【规律方法】充要条件的两种判断方法(1)定义法:根据pq,qp进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.【训练1】 (2018浙江卷)已知平面,直线m,n满足m,n,则“mn”是“m”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点二充分条件、必要条件的应用典例迁移【例2】 (经典母题)已知Px|x28x200,非空集合Sx|1mx1m.若xP是xS的必要条件,求m的取值范围.【迁移探究1】 本例条件不变,若xP是xS
5、的必要不充分条件,求m的取值范围.【迁移探究2】 本例条件不变,若xP的必要条件是xS,求m的取值范围.【迁移探究3】 本例条件不变,问是否存在实数m,使xP是xS的充要条件?并说明理由.【规律方法】充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件.【训练2】 (2019临沂月考)
6、设p:实数x满足x24ax3a20.若a0且p是q的充分不必要条件,求实数a的取值范围.考点三全称量词与存在量词角度1全(特)称命题的否定【例31】 (1)命题“nN*,f(n)N*且f(n)n”的否定形式是()A.nN*,f(n)N*且f(n)nB.nN*,f(n) N*或f(n)nC.n0N*,f(n0) N*且f(n0)n0D.n0N*,f(n0) N*或f(n0)n0(2)(2019德州调研)命题“x0R,1f(x0)2”的否定形式是()A.xR,1f(x)2B.x0R,12D.xR,f(x)1或f(x)2角度2含有量词(、)的参数取值问题【例32】 (经典母题)已知f(x)ln(x2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-94869.html