专题3.2利用导数研究函数的单调性 2020年高考数学一轮复习对点提分(文理科通用)原卷版
《专题3.2利用导数研究函数的单调性 2020年高考数学一轮复习对点提分(文理科通用)原卷版》由会员分享,可在线阅读,更多相关《专题3.2利用导数研究函数的单调性 2020年高考数学一轮复习对点提分(文理科通用)原卷版(12页珍藏版)》请在七七文库上搜索。
1、第三篇 导数及其应用专题3.02利用导数研究函数的单调性【考试要求】1.结合实例,借助几何直观了解函数的单调性与导数的关系;能利用导数研究函数的单调性;对于多项式函数,能求不超过三次的多项式函数的单调区间;2.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件;3.能利用导数求某些函数的极大值、极小值以及给定闭区间上不超过三次的多项式函数的最大值、最小值;体会导数与单调性、极值、最大(小)值的关系.【知识梳理】1.函数的单调性与导数的关系函数yf(x)在某个区间内可导,则:(1)若f(x)0,则f(x)在这个区间内单调递增;(2)若f(x)0,右侧f(x)0x0附近的左侧f(x)0图象
2、形如山峰形如山谷极值f(x0)为极大值f(x0)为极小值极值点x0为极大值点x0为极小值点3.函数的最值与导数(1)函数f(x)在a,b上有最值的条件如果在区间a,b上函数yf(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求yf(x)在a,b上的最大(小)值的步骤求函数yf(x)在(a,b)内的极值;将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 【微点提示】1.函数f(x)在区间(a,b)上递增,则f(x)0,“f(x)0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.2.对于可导函数
3、f(x),“f(x0)0”是“函数f(x)在xx0处有极值”的必要不充分条件.3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f(x)0.()(2)如果函数f(x)在某个区间内恒有f(x)0,则f(x)在此区间内没有单调性.()(3)函数的极大值一定大于其极小值.()(4)对可导函数f(x),f(x0)0是x0为极值点的充要条件.()(5)函数
4、的最大值不一定是极大值,函数的最小值也不一定是极小值.()【教材衍化】2.(选修22P32A4 改编)如图是f(x)的导函数f(x)的图象,则f(x)的极小值点的个数为()A.1 B.2 C.3 D.43.(选修22P32A5(4)改编)函数f(x)2xxln x的极值是()A. B. C.e D.e2【真题体验】4.(2019青岛月考)函数f(x)cos xx在(0,)上的单调性是()A.先增后减 B.先减后增C.单调递增 D.单调递减5.(2017浙江卷)函数yf(x)的导函数yf(x)的图象如图所示,则函数yf(x)的图象可能是()6.(2019豫南九校考评)若函数f(x)x(xc)2在
5、x2处有极小值,则常数c的值为()A.4 B.2或6C.2 D.6【考点聚焦】考点一求函数的单调区间【例1】 已知函数f(x)ax3x2(aR)在x处取得极值.(1)确定a的值;(2)若g(x)f(x)ex,求函数g(x)的单调减区间.【规律方法】1.求函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求f(x);(3)在定义域内解不等式f(x)0,得单调递增区间;(4)在定义域内解不等式f(x)0,得单调递减区间.2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f(x)xln x,则f(x)()A.在(0,)上递增 B.在(0,)上递减C.在上递增
6、 D.在上递减(2)已知定义在区间(,)上的函数f(x)xsin xcos x,则f(x)的单调递增区间为_.【例2】 (2017全国卷改编)已知函数f(x)ex(exa)a2x,其中参数a0.(1)讨论f(x)的单调性;(2)若f(x)0,求a的取值范围.【规律方法】1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f(x)x3,f(x)3x20(f(x)0在x0时取到),f(x)在R上是增函数.【训练2】 已知f(x)aln x,a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-94962.html