专题2.7函数的图像 2020年高考数学一轮复习对点提分(文理科通用)解析版
《专题2.7函数的图像 2020年高考数学一轮复习对点提分(文理科通用)解析版》由会员分享,可在线阅读,更多相关《专题2.7函数的图像 2020年高考数学一轮复习对点提分(文理科通用)解析版(18页珍藏版)》请在七七文库上搜索。
1、第二篇 函数及其性质专题2.07函数的图象【考试要求】1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,解决方程解的个数与不等式解的问题.【知识梳理】1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换yf(x)的图象yf(x)的图象;yf(x)的图象yf(x)的图象;yf(x)的图象yf(
2、x)的图象;yax(a0,且a1)的图象ylogax(a0,且a1)的图象.(3)伸缩变换yf(x)yf(ax).yf(x)yAf(x).(4)翻折变换yf(x)的图象y|f(x)|的图象;yf(x)的图象yf(|x|)的图象.【微点提醒】记住几个重要结论(1)函数yf(x)与yf(2ax)的图象关于直线xa对称.(2)函数yf(x)与y2bf(2ax)的图象关于点(a,b)中心对称.(3)若函数yf(x)对定义域内任意自变量x满足:f(ax)f(ax),则函数yf(x)的图象关于直线xa对称.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)函数yf(1x)的图象,可由yf(x)
3、的图象向左平移1个单位得到.()(2)函数yf(x)的图象关于y轴对称即函数yf(x)与yf(x)的图象关于y轴对称.()(3)当x(0,)时,函数yf(|x|)的图象与y|f(x)|的图象相同.()(4)若函数yf(x)满足f(1x)f(1x),则函数f(x)的图象关于直线x1对称.()【答案】(1)(2)(3)(4)【解析】(1)yf(x)的图象向左平移1个单位得到yf(1x),故(1)错.(2)两种说法有本质不同,前者为函数的图象自身关于y轴对称,后者是两个函数的图象关于y轴对称,故(2)错.(3)令f(x)x,当x(0,)时,y|f(x)|x,yf(|x|)x,两函数图象不同,故(3)
4、错.【教材衍化】2.(必修1P24A7改编)下列图象是函数y的图象的是()【答案】C【解析】其图象是由yx2图象中x0时,函数g(x)logf(x)有意义,由函数f(x)的图象知满足f(x)0时,x(2,8.【考点聚焦】考点一作函数的图象【例1】 作出下列函数的图象:(1)y;(2)y|log2(x1)|;(3)yx22|x|1.【答案】见解析【解析】(1)先作出y的图象,保留y图象中x0的部分,再作出y的图象中x0部分关于y轴的对称部分,即得y的图象,如图实线部分. (2)将函数ylog2x的图象向左平移一个单位,再将x轴下方的部分沿x轴翻折上去,即可得到函数y|log2(x1)|的图象,如
5、图.(3)y且函数为偶函数,先用描点法作出0,)上的图象,再根据对称性作出(,0)上的图象,得图象如图.【规律方法】作函数图象的一般方法(1)直接法.当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【训练1】 分别作出下列函数的图象:(1)y|lg x|;(2)ysin |x|.【答案】见解析【解析】(1)先作出函数ylg x的图象,再将x轴下方的部分沿x轴翻折上去,即可得函数y|lg x|
6、的图象,如图实线部分.(2)当x0时,ysin|x|与ysin x的图象完全相同,又ysin|x|为偶函数,图象关于y轴对称,其图象如图.考点二函数图象的辨识【例2】 (1)(一题多解)(2017全国卷)函数y1x的部分图象大致为()(2)函数y2x2e|x|在2,2的图象大致为()【答案】(1)D(2)D【解析】(1)法一易知g(x)x为奇函数,故y1x的图象关于点(0,1)对称,排除C;当x(0,1)时,y0,排除A;当x时,y1,排除B,选项D满足.法二当x1时,f(1)11sin 12sin 12,排除A,C;又当x时,y,排除B,而D满足.(2)f(x)2x2e|x|,x2,2是偶函
7、数,又f(2)8e2(0,1),排除选项A,B;当x0时,f(x)2x2ex,f(x)4xex,所以f(0)10,所以函数f(x)在(0,2)上有解,故函数f(x)在0,2上不单调,排除C,故选D.【规律方法】1.抓住函数的性质,定性分析:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从周期性,判断图象的循环往复;(4)从函数的奇偶性,判断图象的对称性.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.【训练2】 (2018浙江卷)函数y2|x|sin 2x的图象可能是()【答案】D
8、【解析】设f(x)2|x|sin 2x,其定义域为R且关于坐标原点对称,又f(x)2|x|sin(2x)f(x),所以yf(x)是奇函数,故排除选项A,B;令f(x)0,所以sin 2x0,所以2xk(kZ),即x(kZ),故排除选项C.故选D.考点三函数图象的应用角度1研究函数的性质【例31】 已知函数f(x)x|x|2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,)B.f(x)是偶函数,递减区间是(,1)C.f(x)是奇函数,递减区间是(1,1)D.f(x)是奇函数,递增区间是(,0)【答案】C【解析】将函数f(x)x|x|2x去掉绝对值得f(x)画出函数f(x)的图象,
9、如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(1,1)上是减少的.角度2求不等式的解集【例32】 已知函数yf(x)的图象是如图所示的折线ACB,且函数g(x)log2(x1)”,则不等式f(x)g(x)的解集是()A.x|1x0B.x|1x1C.x|1x1D.x|1x2【答案】C【解析】令g(x)ylog2(x1),作出函数g(x)图象如图,由得结合图象知不等式f(x)log2(x1)的解集为x|10.若存在实数b,使得关于x的方程f(x)b有三个不同的根,则m的取值范围是_.【答案】(3,)【解析】在同一坐标系中,作yf(x)与yb的图象.当xm时,x2
10、2mx4m(xm)24mm2,要使方程f(x)b有三个不同的根,则有4mm20.又m0,解得m3.【规律方法】1.利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象可解决某些方程和不等式的求解问题,方程f(x)g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)g(x)的解集是函数f(x)的图象位于g(x)图象下方的点的横坐标的集合,体现了数形结合思想.【训练3】 (1)(2019杭州检测)已知f(x)2x1,g(x)1x2,规定:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-94965.html