专题5.1数列的概念及简单表示法 2020年高考数学一轮复习对点提分(文理科通用)原卷版
《专题5.1数列的概念及简单表示法 2020年高考数学一轮复习对点提分(文理科通用)原卷版》由会员分享,可在线阅读,更多相关《专题5.1数列的概念及简单表示法 2020年高考数学一轮复习对点提分(文理科通用)原卷版(12页珍藏版)》请在七七文库上搜索。
1、第五篇 数列及其应用专题5.01 数列的概念及简单表示法【考试要求】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.【知识梳理】1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列an1an其中nN*递减数列an1an常数列an1an摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式(1)通项公式:如果数列
2、an的第n项an与序号n之间的关系可以用一个式子anf(n)来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列an的第1项(或前几项),且从第二项(或某一项)开始的任一项an与它的前一项an1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.【微点提醒】1.若数列an的前n项和为Sn,通项公式为an,则an2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.【疑误辨析】1.判断下列结论正误(在括号内打
3、“”或“”)(1)相同的一组数按不同顺序排列时都表示同一个数列.()(2)1,1,1,1,不能构成一个数列.()(3)任何一个数列不是递增数列,就是递减数列.()(4)如果数列an的前n项和为Sn,则对任意nN*,都有an1Sn1Sn.()【教材衍化】2.(必修5P33A4改编)在数列an中,a11,an1(n2),则a5等于()A. B. C. D.3.(必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式an_.【真题体验】4.(2019山东省实验中学摸底)已知数列an中,a11,an12an1(nN*),Sn为其前n项和,则S5的值为()A.57 B.61
4、C.62 D.635.(2018北京朝阳区月考)数列0,1,0,1,0,1,0,1,的一个通项公式an等于()A. B.cos C.cos D.cos 6.(2019天津河东区一模)设数列an的前n项和为Sn,且Sn,若a432,则a1_.【考点聚焦】考点一由数列的前几项求数列的通项【例1】 (1)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是()A.an(1)n11 B.anC.an2sin D.ancos(n1)1(2)已知数列an为,则数列an的一个通项公式是_.【规律方法】由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、
5、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:分式中分子、分母的特征;相邻项的变化特征;拆项后的特征;各项的符号特征和绝对值特征;化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;对于符号交替出现的情况,可用(1)k或(1)k1,kN*处理.【训练1】 写出下列各数列的一个通项公式:(1),;(2),2,8,;(3)5,55,555,5 555,.考点二由an与Sn的关系求通项【例2】 (1)(2019广州质检)已知Sn为数列an的前n项和,且log2(Sn1)n1,则数列an的通项公式为_.(2)(2018全国卷)记Sn为数列an的前
6、n项和.若Sn2an1,则S6_.【规律方法】数列的通项an与前n项和Sn的关系是an当n1时,a1若适合SnSn1,则n1的情况可并入n2时的通项an;当n1时,a1若不适合SnSn1,则用分段函数的形式表示.【易错警示】在利用数列的前n项和求通项时,往往容易忽略先求出a1,而是直接把数列的通项公式写成anSnSn1的形式,但它只适用于n2的情形.例如例2第(1)题易错误求出an2n(nN*).【训练2】 (1)已知数列an的前n项和Sn2n23n,则数列an的通项公式an_.(2)已知数列an的前n项和Sn3n1,则数列的通项公式an_.考点三由数列的递推关系求通项【例3】 (1)在数列a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-94986.html