专题8.8抛物线及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版
《专题8.8抛物线及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版》由会员分享,可在线阅读,更多相关《专题8.8抛物线及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版(15页珍藏版)》请在七七文库上搜索。
1、第八篇 平面解析几何专题8.08抛物线及其几何性质【考试要求】1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.【知识梳理】1.抛物线的定义(1)平面内与一个定点F和一条定直线l(Fl)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:M|MF|d(d为点M到准线l的距离).2.抛物线的标准方程与几何性质图形标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y0x0焦点FFFF离
2、心率e1准线方程xxyy范围x0,yRx0,yRy0,xRy0,xR开口方向向右向左向上向下【微点提醒】1.通径:过焦点且垂直于对称轴的弦长等于2p,通径是过焦点最短的弦.2.抛物线y22px(p0)上一点P(x0,y0)到焦点F的距离|PF|x0,也称为抛物线的焦半径.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.()(2)方程yax2(a0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是,准线方程是x.()(3)抛物线既是中心对称图形,又是轴对称图形.()(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线
3、截得的线段叫做抛物线的通径,那么抛物线x22ay(a0)的通径长为2a.()【教材衍化】2.(选修21P72A1改编)顶点在原点,且过点P(2,3)的抛物线的标准方程是_.3. (选修21P67A3改编)抛物线y28x上到其焦点F距离为5的点的个数为_.【真题体验】4.(2019黄冈联考)已知方程y24x表示抛物线,且该抛物线的焦点到直线xm的距离为4,则m的值为()A.5 B.3或5 C.2或6 D.65.(2019北京海淀区检测)设抛物线y28x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4 B.6 C.8 D.126.(2019宁波调研)已知抛物线方程为y28x,若过点
4、Q(2,0)的直线l与抛物线有公共点,则直线l的斜率的取值范围是_.【考点聚焦】考点一抛物线的定义及应用【例1】 (1)(2019厦门外国语模拟)已知抛物线x22y的焦点为F,其上有两点A(x1,y1),B(x2,y2)满足|AF|BF|2,则y1xy2x()A.4 B.6 C.8 D.10(2)若抛物线y24x的准线为l,P是抛物线上任意一点,则P到准线l的距离与P到直线3x4y70的距离之和的最小值是()A.2 B. C. D.3【规律方法】应用抛物线定义的两个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x0,y0)到焦点F的距离
5、|PF|x0|或|PF|y0|.【训练1】 (1)动圆过点(1,0),且与直线x1相切,则动圆的圆心的轨迹方程为_.(2)(2017全国卷)已知F是抛物线C:y28x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|_.考点二抛物线的标准方程及其性质【例2】 (1)(2018晋城模拟)抛物线C:y24x的焦点为F,其准线l与x轴交于点A,点M在抛物线C上,当时,AMF的面积为()A.1 B. C.2 D.2(2)已知圆C1:x2(y2)24,抛物线C2:y22px(p0),C1与C2相交于A,B两点,且|AB|,则抛物线C2的方程为()A.y2x B.y2xC.y2x
6、 D.y2x【规律方法】1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.2.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【训练2】 (1)如图,过抛物线y22px(p0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|2|BF|,且|AF|3,则此抛物线的方程为_.(2)(2019济宁调研)已知点A(3,0),过抛物线y24x上一点P的直线与直线x1垂直相交于点B,若|PB|PA|
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95088.html