专题7.7利用空间向量求夹角与距离距离供选用 2020年高考数学一轮复习对点提分(文理科通用)原卷版
《专题7.7利用空间向量求夹角与距离距离供选用 2020年高考数学一轮复习对点提分(文理科通用)原卷版》由会员分享,可在线阅读,更多相关《专题7.7利用空间向量求夹角与距离距离供选用 2020年高考数学一轮复习对点提分(文理科通用)原卷版(11页珍藏版)》请在七七文库上搜索。
1、第七篇 立体几何与空间向量专题7.07利用空间向量求夹角和距离(距离供选用)【考点聚焦突破】考点一用空间向量求异面直线所成的角【例1】 (1)(一题多解)(2017全国卷)已知直三棱柱ABCA1B1C1中,ABC120,AB2,BCCC11,则异面直线AB1与BC1所成角的余弦值为()A. B. C. D.(2)(一题多解)(2019河北、山西、河南三省联考)在三棱锥PABC中,ABC和PBC均为等边三角形,且二面角PBCA的大小为120,则异面直线PB和AC所成角的余弦值为()A. B. C. D.【规律方法】1.利用向量法求异面直线所成角的一般步骤是:(1)选好基底或建立空间直角坐标系;(
2、2)求出两直线的方向向量v1,v2;(3)代入公式|cosv1,v2|求解.2.两异面直线所成角的范围是,两向量的夹角的范围是0,当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.【训练1】 (一题多解)如图,在正三棱柱ABCA1B1C1中,AA1AB,E,F分别为BC,BB1的中点,M,N分别为AA1,A1C1的中点,则直线MN与EF所成角的余弦值为()A. B. C. D.考点二用空间向量求线面角【例2】 (2018全国卷)如图,在三棱锥PABC中,ABBC2,PAPBPCAC4,O为AC的中点.(1)证明:PO平
3、面ABC;(2)若点M在棱BC上,且二面角MPAC为30,求PC与平面PAM所成角的正弦值.【规律方法】利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.【训练2】 (2019郑州测试)在如图所示的多面体中,四边形ABCD是平行四边形,四边形BDEF是矩形,ED平面ABCD,ABD,AB2AD.(1)求证:平面BDEF平面ADE;(2)若EDBD,求直线AF与平面AEC所成角的正弦值.考点三用空间向量求二面角【
4、例3】 (2019北京海淀区模拟)如图1,在高为6的等腰梯形ABCD中,ABCD,且CD6,AB12,将它沿对称轴OO1折起,使平面ADO1O平面BCO1O,如图2,点P为BC的中点,点E在线段AB上(不同于A,B两点),连接OE并延长至点Q,使AQOB.(1)(一题多解)证明:OD平面PAQ;(2)若BE2AE,求二面角CBQA的余弦值.【规律方法】利用空间向量计算二面角大小的常用方法:(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱
5、垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【训练3】 (2018安徽六校第二次联考)如图,在四棱柱ABCDA1B1C1D1中,ABCD,ABBCCC12CD,E为线段AB的中点,F是线段DD1上的动点.(1)求证:EF平面BCC1B1;(2)(一题多解)若BCDC1CD60,且平面D1C1CD平面ABCD,求平面BCC1B1与平面DC1B1所成角(锐角)的余弦值.考点四用空间向量求空间距离(供选用)【例4】 如图,BCD与MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,AB2,求点A到平面MBC的距离.【规律方法】1.空间中两点间的距离的求法两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95094.html