专题8.5椭圆及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版
《专题8.5椭圆及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版》由会员分享,可在线阅读,更多相关《专题8.5椭圆及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版(13页珍藏版)》请在七七文库上搜索。
1、第八篇 平面解析几何专题8.05椭圆及其几何性质【考试要求】1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.【知识梳理】1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.其数学表达式:集合PM|MF1|MF2|2a,|F1F2|2c,其中a0,c0,且a,c为常数:(1)若ac,则集合P为椭圆;(2)若ac,则集合P为线段;(3)若ac,则集合P为空集.2.椭圆的标准方程和几何性质标准方程1(ab0)1(ab0)图形性
2、质范围axabybbxbaya对称性对称轴:坐标轴;对称中心:原点顶点A1(a,0),A2(a,0),B1(0,b),B2(0,b)A1(0,a),A2(0,a),B1(b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|2c离心率e(0,1)a,b,c的关系c2a2b2【微点提醒】点P(x0,y0)和椭圆的位置关系(1)点P(x0,y0)在椭圆内1.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆的离心率e越大,椭圆就越圆.()(3)方程mx2ny21(m0,n0,m
3、n)表示的曲线是椭圆.()(4)1(ab0)与1(ab0)的焦距相同.()【教材衍化】2.(选修21P49T1改编)若F1(3,0),F2(3,0),点P到F1,F2的距离之和为10,则P点的轨迹方程是_.3.(选修21P49A6改编)已知点P是椭圆1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为_.【真题体验】4.(2018张家口调研)椭圆1的焦点坐标为()A.(3,0) B.(0,3) C.(9,0) D.(0,9)5.(2018全国卷)已知椭圆C:1的一个焦点为(2,0),则C的离心率为()A. B. C. D.6.(2018武汉模拟)曲线1与曲线1
4、(k0,n0,mn),不必考虑焦点位置,用待定系数法求出m,n的值即可.【训练2】 (1)(2018济南模拟)已知椭圆C:1(ab0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为()A.1 B.1C.1 D.1(2)(2018榆林模拟)已知F1(1,0),F2(1,0)是椭圆C的焦点,过F2且垂直于x轴的直线交椭圆C于A,B两点,且|AB|3,则C的方程为()A.y21 B.1C.1 D.1考点三椭圆的几何性质多维探究角度1椭圆的长轴、短轴、焦距【例31】 (2018泉州质检)已知椭圆1的长轴在x轴上,焦距为4,则m等于()A.8 B.7 C.6 D.5角度2椭圆的离心率【例
5、32】 (2018全国卷)已知F1,F2是椭圆C:1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,PF1F2为等腰三角形,F1F2P120,则C的离心率为()A. B. C. D.角度3与椭圆性质有关的最值或范围问题【例33】 (2017全国卷)设A,B是椭圆C:1长轴的两个端点.若C上存在点M满足AMB120,则m的取值范围是()A.(0,19,) B.(0,9,)C.(0,14,) D.(0,4,)【规律方法】1.求椭圆离心率的方法(1)直接求出a,c的值,利用离心率公式直接求解.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2a2c2消去b,转化为含有e的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95103.html