专题7.7利用空间向量求夹角与距离距离供选用 2020年高考数学一轮复习对点提分(文理科通用)解析版
《专题7.7利用空间向量求夹角与距离距离供选用 2020年高考数学一轮复习对点提分(文理科通用)解析版》由会员分享,可在线阅读,更多相关《专题7.7利用空间向量求夹角与距离距离供选用 2020年高考数学一轮复习对点提分(文理科通用)解析版(29页珍藏版)》请在七七文库上搜索。
1、第七篇 立体几何与空间向量专题7.07利用空间向量求夹角和距离(距离供选用)【考点聚焦突破】考点一用空间向量求异面直线所成的角【例1】 (1)(一题多解)(2017全国卷)已知直三棱柱ABCA1B1C1中,ABC120,AB2,BCCC11,则异面直线AB1与BC1所成角的余弦值为()A. B. C. D.(2)(一题多解)(2019河北、山西、河南三省联考)在三棱锥PABC中,ABC和PBC均为等边三角形,且二面角PBCA的大小为120,则异面直线PB和AC所成角的余弦值为()A. B. C. D.【答案】(1)C(2)A【解析】(1)法一以B为原点,建立如图(1)所示的空间直角坐标系.图(
2、1)则B(0,0,0),B1(0,0,1),C1(1,0,1).又在ABC中,ABC120,AB2,则A(1,0).所以(1,1),(1,0,1),则cos,因此,异面直线AB1与BC1所成角的余弦值为.法二将直三棱柱ABCA1B1C1补形成直四棱柱ABCDA1B1C1D1(如图(2),连接AD1,B1D1,则AD1BC1.图(2)则B1AD1为异面直线AB1与BC1所成的角(或其补角),易求得AB1,BC1AD1,B1D1.由余弦定理得cosB1AD1.(2)法一取BC的中点O,连接OP,OA,因为ABC和PBC均为等边三角形,所以AOBC,POBC,所以POA就是二面角PBCA的平面角,即
3、POA120,过点B作AC的平行线交AO的延长线于点D,连接PD,则PBD或其补角就是异面直线PB和AC所成的角.设ABa,则PBBDa,POPDa,所以cos PBD.法二如图,取BC的中点O,连接OP,OA,因为ABC和PBC均为等边三角形,所以AOBC,POBC,所以BC平面PAO,即平面PAO平面ABC.且POA就是其二面角PBCA的平面角,即POA120,建立空间直角坐标系如图所示.设AB2,则A(,0,0),C(0,1,0),B(0,1,0),P,所以(,1,0),cos ,所以异面直线PB与AC所成角的余弦值为.法三如图所示,取BC的中点O,连接OP,OA,因为ABC和PBC是全
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95114.html