专题8.5椭圆及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)解析版
《专题8.5椭圆及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)解析版》由会员分享,可在线阅读,更多相关《专题8.5椭圆及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)解析版(17页珍藏版)》请在七七文库上搜索。
1、第八篇 平面解析几何专题8.05椭圆及其几何性质【考试要求】1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.【知识梳理】1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.其数学表达式:集合PM|MF1|MF2|2a,|F1F2|2c,其中a0,c0,且a,c为常数:(1)若ac,则集合P为椭圆;(2)若ac,则集合P为线段;(3)若ac,则集合P为空集.2.椭圆的标准方程和几何性质标准方程1(ab0)1(ab0)图形性
2、质范围axabybbxbaya对称性对称轴:坐标轴;对称中心:原点顶点A1(a,0),A2(a,0),B1(0,b),B2(0,b)A1(0,a),A2(0,a),B1(b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|2c离心率e(0,1)a,b,c的关系c2a2b2【微点提醒】点P(x0,y0)和椭圆的位置关系(1)点P(x0,y0)在椭圆内1.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆的离心率e越大,椭圆就越圆.()(3)方程mx2ny21(m0,n0,m
3、n)表示的曲线是椭圆.()(4)1(ab0)与1(ab0)的焦距相同.()【答案】(1)(2)(3)(4)【解析】(1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形.(2)因为e,所以e越大,则越小,椭圆就越扁.【教材衍化】2.(选修21P49T1改编)若F1(3,0),F2(3,0),点P到F1,F2的距离之和为10,则P点的轨迹方程是_.【答案】1【解析】因为|PF1|PF2|10|F1F2|6,所以点P的轨迹是以F1,F2为焦点的椭圆,其中a5,c3,b4,故点P的轨迹方程为1.3.(
4、选修21P49A6改编)已知点P是椭圆1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为_.【答案】(,1)或(,1)【解析】设P(x,y),由题意知c2a2b2541,所以c1,则F1(1,0),F2(1,0),由题意可得点P到x轴的距离为1,所以y1,把y1代入1,得x,又x0,所以x,P点坐标为(,1)或(,1).【真题体验】4.(2018张家口调研)椭圆1的焦点坐标为()A.(3,0) B.(0,3) C.(9,0) D.(0,9)【答案】B【解析】根据椭圆方程可得焦点在y轴上,且c2a2b225169,c3,故焦点坐标为(0,3).5.(2018全
5、国卷)已知椭圆C:1的一个焦点为(2,0),则C的离心率为()A. B. C. D.【答案】C【解析】不妨设a0.因为椭圆C的一个焦点为(2,0),所以焦点在x轴上,且c2,所以a2448,所以a2,所以椭圆C的离心率e.6.(2018武汉模拟)曲线1与曲线1(k9)的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等【答案】D【解析】曲线1表示焦点在x轴上的椭圆,其长轴长为10,短轴长为6,焦距为8,离心率为.曲线1(k8|C1C2|,所以M的轨迹是以C1,C2为焦点的椭圆,且2a16,2c8,所以a8,c4,b4,故所求的轨迹方程为1.(2)法一当椭圆的焦点在x轴上时,设所求椭
6、圆的方程为1 (ab0).椭圆经过两点(2,0),(0,1),解得所求椭圆的标准方程为y21;当椭圆的焦点在y轴上时,设所求椭圆的方程为1 (ab0).椭圆经过两点(2,0),(0,1),解得与ab矛盾,故舍去.综上可知,所求椭圆的标准方程为y21.法二设椭圆方程为mx2ny21 (m0,n0,mn).椭圆过(2,0)和(0,1)两点,解得综上可知,所求椭圆的标准方程为y21.【规律方法】根据条件求椭圆方程的主要方法有:(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义.(2)待定系数法:根据题目所给的条件确定椭圆中的a,b.当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx2
7、ny21(m0,n0,mn),不必考虑焦点位置,用待定系数法求出m,n的值即可.【训练2】 (1)(2018济南模拟)已知椭圆C:1(ab0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为()A.1 B.1C.1 D.1(2)(2018榆林模拟)已知F1(1,0),F2(1,0)是椭圆C的焦点,过F2且垂直于x轴的直线交椭圆C于A,B两点,且|AB|3,则C的方程为()A.y21 B.1C.1 D.1【答案】(1)B(2)C【解析】(1)椭圆长轴长为6,即2a6,得a3,两焦点恰好将长轴三等分,2c2a2,得c1,因此,b2a2c2918,所以此椭圆的标准方程为1.(2)由题意
8、,设椭圆方程为1(ab0),将A(c,y1)代入椭圆方程得1,由此求得y,所以|AB|3,又c1,a2b2c2,可解得a2,b23,所以椭圆C的方程为1.考点三椭圆的几何性质多维探究角度1椭圆的长轴、短轴、焦距【例31】 (2018泉州质检)已知椭圆1的长轴在x轴上,焦距为4,则m等于()A.8 B.7 C.6 D.5【答案】A【解析】因为椭圆1的长轴在x轴上,所以解得6mb0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,PF1F2为等腰三角形,F1F2P120,则C的离心率为()A. B. C. D.【答案】D【解析】由题意可知椭圆的焦点在x轴上,如图所示,设|F1F2|2c,
9、PF1F2为等腰三角形,且F1F2P120,|PF2|F1F2|2c.|OF2|c,过P作PE垂直x轴于点E,则PF2E60,所以|F2E|c,|PE|c,即点P(2c,c).点P在过点A,且斜率为的直线上,解得,e.角度3与椭圆性质有关的最值或范围问题【例33】 (2017全国卷)设A,B是椭圆C:1长轴的两个端点.若C上存在点M满足AMB120,则m的取值范围是()A.(0,19,) B.(0,9,)C.(0,14,) D.(0,4,)【答案】A【解析】当焦点在x轴上,依题意得0m3,且tan.0m3且m1,则03,且tan,m9,综上,m的取值范围是(0,19,).【规律方法】1.求椭圆
10、离心率的方法(1)直接求出a,c的值,利用离心率公式直接求解.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2a2c2消去b,转化为含有e的方程(或不等式)求解.2.在求与椭圆有关的一些量的范围,或者最值时,经常用到椭圆标准方程中x,y的范围、离心率的范围等不等关系.【训练3】 (1)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为()A.1 B. C.2 D.2(2)(2019豫南九校联考)已知两定点A(1,0)和B(1,0),动点P(x,y)在直线l:yx3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C. D.【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95121.html