专题7.4直线、平面垂直的判定及性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版
《专题7.4直线、平面垂直的判定及性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版》由会员分享,可在线阅读,更多相关《专题7.4直线、平面垂直的判定及性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版(21页珍藏版)》请在七七文库上搜索。
1、第七篇 立体几何与空间向量专题7.04直线、平面垂直的判定及性质【考试要求】1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.【知识梳理】1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面内的任意直线都垂直,就说直线l与平面互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直l性质定理 两直线垂直于同一个平面,那么这两条直线平行ab2.直线和平面所成的角(1)定义:一条斜线和它在平面上的射影所成的
2、锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0的角.(2)范围:.3.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;(2)二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.(3)二面角的范围:0,.4.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面经过另一个平面的一条垂线,则这两个平面
3、互相垂直性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面l【微点提醒】1.两个重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)直线l与平面内的无数条直线都垂直,则l.()(2)垂直于同一个平面的两平面平行.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另
4、一个平面.()(4)若平面内的一条直线垂直于平面内的无数条直线,则.() 【教材衍化】2.(必修2P66练习改编)已知直线a,b和平面,且ab,a,则b与的位置关系为()A.b B.bC.b或b D.b与相交3.(必修2P67练习2改编)已知P为ABC所在平面外一点,且PA,PB,PC两两垂直,有下列结论:PABC;PBAC;PCAB;ABBC.其中正确的是()A. B.C. D.【真题体验】4.(2019上海静安区质检)已知m和n是两条不同的直线,和是两个不重合的平面,下面给出的条件中一定能推出m的是()A.且m B.mn且nC.mn且n D.mn且5.(2017全国卷)在正方体ABCDA1
5、B1C1D1中,E为棱CD的中点,则()A.A1EDC1 B.A1EBDC.A1EBC1 D.A1EAC6.(2018安阳二模)已知a,b表示两条不同的直线,表示两个不同的平面,下列说法错误的是()A.若a,b,则abB.若a,b,ab,则C.若a,ab,则bD.若a,ab,则b或b【考点聚焦】考点一线面垂直的判定与性质【例1】 (2018全国卷)如图,在三棱锥PABC中,ABBC2,PAPBPCAC4,O为AC的中点.(1)证明:PO平面ABC;(2)若点M在棱BC上,且MC2MB,求点C到平面POM的距离.【规律方法】1.证明直线和平面垂直的常用方法有:(1)判定定理;(2)垂直于平面的传
6、递性(ab,ab);(3)面面平行的性质(a,a);(4)面面垂直的性质(,a,la,ll).2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【训练1】 (2019青岛调研)如图,三棱柱ABCA1B1C1中,已知AB侧面BB1C1C,ABBC1,BB12,BCC160.(1)求证:BC1平面ABC;(2)E是棱CC1上的一点,若三棱锥EABC的体积为,求线段CE的长.考点二面面垂直的判定与性质【例2】 如图,在四棱锥PABCD中,ABCD,ABAD,CD2AB,平面PAD底面ABCD,PAAD,E和F分别是C
7、D和PC的中点,求证:(1)PA底面ABCD;(2)BE平面PAD;(3)平面BEF平面PCD.【规律方法】1.证明平面和平面垂直的方法:(1)面面垂直的定义;(2)面面垂直的判定定理.2.已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.【训练2】 (2018泸州模拟)如图,在四棱锥SABCD中,底面ABCD是梯形,ABDC,ABC90,ADSD,BCCDAB,侧面SAD底面ABCD.(1)求证:平面SBD平面SAD;(2)若SDA120,且三棱锥SBCD的体积为,求侧面 SAB的面积.考点三平行与垂直的综合问题角度1多面体中平行
8、与垂直关系的证明【例31】 (2018北京卷)如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PAPD,E,F分别为AD,PB的中点.(1)求证:PEBC;(2)求证:平面PAB平面PCD;(3)求证:EF平面PCD.【规律方法】1.三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.2.垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用.角度2平行与垂直关系中的探索性问题【例32】 如图,三棱锥PABC中,PA平面ABC,PA1,AB1,AC2,BAC60.(1)求三棱锥PABC的体积;(2)在线段PC上是否存在点M,使得A
9、CBM,若存在点M,求出的值;若不存在,请说明理由.【规律方法】1.求条件探索性问题的主要途径:(1)先猜后证,即先观察与尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.2.涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.角度3空间位置关系与几何体的度量计算【例33】 如图,在四棱锥PABCD中,AD平面PDC,ADBC,PDPB,AD1,BC3,CD4,PD2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD平面PBC;(3)求直线AB与平面PBC所成角的正弦值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95130.html