【人教版】2018学年八年级数学上册《12.2.3角边角、角角边》ppt课件
《【人教版】2018学年八年级数学上册《12.2.3角边角、角角边》ppt课件》由会员分享,可在线阅读,更多相关《【人教版】2018学年八年级数学上册《12.2.3角边角、角角边》ppt课件(24页珍藏版)》请在七七文库上搜索。
1、12.2三角形全等的判定,第十二章 全等三角形,导入新课,讲授新课,当堂练习,课堂小结,第3课时 “角边角”、“角角边”,八年级数学上(RJ)教学课件,情境引入,1探索并正确理解三角形全等的判定方法“ASA”和“AAS” 2会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等,导入新课,如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适? 你能说明其中理由吗?,情境引入,讲授新课,问题:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?,图一,图二,“
2、两角及夹边”,“两角和其中一角的对边”,它们能判定两个三角形全等吗?,作图探究,先任意画出一个ABC,再画一个A B C , 使A B =AB, A =A, B =B (即使两角和它们的夹边对应相等).把画好的A B C 剪下,放到ABC上,它们全等吗?,A,B,C,E,D,作法: (1)画A'B'=AB; (2)在A'B'的同旁画DA'B '=A,EB'A '=B,A'D,B'E相交于点C'.,想一想:从中你能发现什么规律?,“角边角”判定方法,文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“
3、角边角”或“ASA”).,几何语言:,例1 已知:ABCDCB,ACB DBC, 求证:ABCDCB,ABCDCB(已知),BCCB(公共边),ACBDBC(已知),,证明:,在ABC和DCB中,,ABCDCB(ASA ).,判定方法:两角和它们的夹边对应相等两个三角形全等,例2 如图,点D在AB上,点E在AC上,AB=AC, B=C,求证:AD=AE.,分析:证明ACDABE,就可以得出AD=AE.,证明:在ACD和ABE中,,A=A(公共角 ), AC=AB(已知), C=B (已知 ),, ACDABE(ASA),,AD=AE.,问题:若三角形的两个内角分别是60
4、和45,且45所对的边为3cm,你能画出这个三角形吗?,合作探究,思考:,这里的条件与1中的条件有什么相同点与不同点?你能将它转化为1中的条件吗?,两角和其中一角的对边对应相等的两个三角形全等. 简写成“角角边”或“AAS”.,归纳总结,例3:在ABC和DEF中,AD,B E,BC=EF.求证:ABCDEF,BE,BCEF,CF.,证明:,在ABC中,A+B+C180.,ABCDEF(ASA )., C180AB.,同理 F180DE.,又 AD,B E, CF.,在ABC和DEF中,,例4 如图,已知:在ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 12.2三角形全等的判定
链接地址:https://www.77wenku.com/p-9528.html