【人教版】2018学年八年级数学上册《13.3.1.2等腰三角形的判定》ppt课件
《【人教版】2018学年八年级数学上册《13.3.1.2等腰三角形的判定》ppt课件》由会员分享,可在线阅读,更多相关《【人教版】2018学年八年级数学上册《13.3.1.2等腰三角形的判定》ppt课件(26页珍藏版)》请在七七文库上搜索。
1、13.3 等腰三角形,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第2课时 等腰三角形的判定,八年级数学上(RJ),1 .掌握等腰三角形的判定方法.(重点) 2.掌握等腰三角形的判定定理,并运用其进行证明和计算.(难点),导入新课,情境引入,在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下一条底边BC和一个底角C,请问,有没有办法把原来的等腰三角形画出来?,A,B,C,A,思考:如图,在ABC中,如果B=C,那么AB与AC之间有什么关系吗?,我测量后发现AB与AC相等.,3cm,3cm,讲授新课,A,B,C,如图,位于海上B、C两处的两艘救生船接到A处遇险船只的
2、报警,当时测得B=C.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?,互动探究,已知:如图,在ABC中, B=C,那么它们所对的边AB和AC有什么数量关系?,建立数学模型:,做一做:画一个ABC,其中B=C=30,请你量一量AB与AC的长度,它们之间有什么数量关系,你能得出什么结论?,AB=AC,你能验证你的结论吗?,在ABD与ACD,,1=2,, ABD ACD.,B=C,,AD=AD,,AB=AC.,过A作AD平分BAC交BC于点D.,证明:, AC=AB. ( ) 即ABC为等腰三角形.,B=C, ( ),知识要点,等腰三角形的判定方法,如果一个三角形有
3、两个角相等,那么这个三角形是等腰三角形(简写成“等角对等边”).,已知,等角对等边,在ABC中,,应用格式:,(,(,(等角对等边).,(等角对等边).,错,因为都不是在同一个三角形中.,辨一辨:如图,下列推理正确吗?,例1 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形,已知: 如图,CAE是ABC的外角,1=2,ADBC,求证:AB=AC,证明:ADBC, 1=B(两直线平行,同位角相等),2=C(两直线平行,内错角相等)又1=2,B=C,AB=AC(等角对等边),例2 已知:如图,AB=DC,BD=CA,BD与CA相交于点E. 求证:AED是等腰三角形.,
4、证明:AB=DC,BD=CA,AD=DA,ABDDCA(SSS),ADB=DAC(全等三角形的对应角相等),AE=DE(等角对等边), AED是等腰三角形.,例3 已知:如图,ADBC,BD平分ABC. 求证:AB=AD,证明: ADBC,ADB=DBC. BD平分ABC,ABD=DBC,ABD=ADB,AB=AD.,总结:平分角+平行=等腰三角形,如图,把一张长方形的纸沿着对角线折叠, 重合部分是一个等腰三角形吗?为什么?,B,C,A,D,E,变式训练,是,由折叠可知,EBD=CBD.,ADBC,EDB=CBD,,EDB=EBD, BE=DE,EBD是等腰三角形.,练一练: 1.在ABC中,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 13.3.1等腰三角形
链接地址:https://www.77wenku.com/p-9538.html