【人教版】2018学年八年级数学上册《13.3.2.1等边三角形的性质与判定》ppt课件
《【人教版】2018学年八年级数学上册《13.3.2.1等边三角形的性质与判定》ppt课件》由会员分享,可在线阅读,更多相关《【人教版】2018学年八年级数学上册《13.3.2.1等边三角形的性质与判定》ppt课件(31页珍藏版)》请在七七文库上搜索。
1、13.3.2 等边三角形,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第1课时 等边三角形的性质与判定,八年级数学上(RJ),1探索等边三角形的性质和判定(重点) 2能运用等边三角形的性质和判定进行计算和证明(难点),小明想制作一个三角形的相框,他有四根木条长度分别为10cm,10cm,10cm,6cm,你能帮他设计出几种形状的三角形?,问题引入,导入新课,等腰三角形,等边三角形,一般三角形,在等腰三角形中,有一种特殊的情况,就是底与腰相等,即三角形的三边相等,我们把三条边都相等的三角形叫作等边三角形.,等边对等角,三线合一,等角对等边,两边相等,两腰相等,轴对称图形,A,B,C
2、,有两条边相等的三角形叫做等腰三角形,讲授新课,类比探究,问题1 等边三角形的三个内角之间有什么关系?,等腰三角形,AB=AC,B=C,等边三角形,AB=AC=BC,AB=AC,B=C,AC=BC,A=B,A=B=C,=60,结论: 等边三角形的三个内角都相等,并且每一 个角都等于60.,已知:AB=AC=BC , 求证:A= B=C= 60.,证明: AB=AC.B=C .(等边对等角)同理 A=C .A=B=C. A+B+C=180, A= B= C=60 .,问题2 等边三角形有“三线合一”的性质吗?等边三角形有几条对称轴?,结论:等边三角形每条边上的中线,高和所对角的平分线都“三线合一
3、”.,顶角的平分线、底边的高 底边的中线 三线合一,一条对称轴,三条对称轴,每一边上的中线、高和这一边所对的角的平分线互相重合,三个角都相等,,对称轴(3条),等边三角形,对称轴(1条),两个底角相等,底边上的中线、高和顶角的平分线互相重合,且都是60,两条边相等,三条边都相等,知识要点,例1 如图,ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若ABE40,BEDE,求CED的度数,解:ABC是等边三角形, ABCACB60. ABE40, EBCABCABE604020. BEDE, DEBC20, CEDACBD40.,典例精析,方法总结:等边三角形是特殊的三
4、角形,它的三个内角都是60,这个性质常应用在求三角形角度的问题上,一般需结合“等边对等角”、三角形的内角和与外角的性质.,变式训练:,如图,ABC是等边三角形,BD平分ABC,延长BC到E,使得CE=CD求证:BD=DE,证明:ABC是等边三角形,BD是角平分线, ABC=ACB=60,DBC=30 又CE=CD, CDE=CED 又BCD=CDE+CED, CDE=CED=30 DBC=DEC DB=DE(等角对等边),例2 ABC为正三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BMCN,BN与AM相交于Q点,BQM等于多少度?,解:ABC为正三角形, ABCCBAC60,AB
5、BC. 又BMCN, AMBBNC(SAS), BAMCBN, BQMABQBAMABQCBNABC60.,方法总结:此题属于等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质判定三角形全等,而后利用全等及等边三角形的性质,求角度或证明边相等.,类比探究,三个角都相等的三角形是等边三角形,等边三角形,从角看:两个角相等的三角形是等腰三角形,从边看:两条边相等的三角形是等腰三角形,三条边都相等的三角形是等边三角形,小明认为还有第三种方法“两条边相等且有一个角是60的三角形也是等边三角形”,你同意吗?,等边三角形的判定方法:有一个角是60的等腰三角形是等边三角形.,辩一辩:根据条件判断下
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 13.3.2等边三角形
链接地址:https://www.77wenku.com/p-9539.html