专题5.3 解析几何中的范围问题高考数学选填题压轴题突破讲义(原卷版)
《专题5.3 解析几何中的范围问题高考数学选填题压轴题突破讲义(原卷版)》由会员分享,可在线阅读,更多相关《专题5.3 解析几何中的范围问题高考数学选填题压轴题突破讲义(原卷版)(7页珍藏版)》请在七七文库上搜索。
1、一方法综述圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值在利用代数法解决最值与范围问题时常从以下几个方面考虑:利用判别式来构造不等关系,从而确定取值范围;利用隐含或已知的不等关系建立不等式,从而求出取值范围;利用基本不等式求出取值范围;利用函数的值域的求法,确定取值范围二解题策略类型一 利用题设条件,结合几何特征与性质求范围【例1】【安徽省六安市第一中学2019届高考模拟四】点在椭圆上,的右焦点为,点在圆上,则的最小值为(
2、)ABCD【指点迷津】1. 本题考查了椭圆定义的知识、圆上一动点与圆外一定点距离的最值问题,解决问题时需要对题中的目标进行转化,将未知的问题转化为熟悉问题,将“多个动点问题”转化为“少(单)个动点”问题,从而解决问题.2.在圆锥曲线的最值问题中,若题目的条件和结论能明显体现几何特征和意义时,则考虑用图形性质来解决,这样可使问题的解决变得直观简捷【举一反三】1.【河北省石家庄市第二中学2019届高三上期末】已知实数满足,则的最大值为( )AB2CD42.点 分别为圆与圆上的动点,点在直线上运动,则的最小值为( )A7B8C9D10类型二 通过建立目标问题的表达式,结合参数或几何性质求范围【例2】
3、抛物线上一点到抛物线准线的距离为,点关于轴的对称点为,为坐标原点,的内切圆与切于点,点为内切圆上任意一点,则的取值范围为_【指点迷津】本题主要考查抛物线性质的运用,参数方程的运用,三角函数的两角和公式合一变形求最值,属于难题,对于这类题目,首先利用已知条件得到抛物线的方程,进而可得到为等边三角形和内切圆的方程,进而得到点的坐标,可利用内切圆的方程设出点含参数的坐标,进而得到,从而得到其取值范围,因此正确求出内切圆的方程是解题的关键【举一反三】【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三二模】已知直线与椭圆:相交于,两点,为坐标原点.当的面积取得最大值时,( )A
4、BCD类型三 利用根的判别式或韦达定理建立不等关系求范围【例3】【四川省内江、眉山等六市2019届高三第二次诊断】若直线xmy+m0与圆(x1)2+y21相交,且两个交点位于坐标平面上不同的象限,则m的取值范围是()A(0,1)B(0,2)C(1,0)D(2,0)【指点迷津】圆都在轴的正半轴和原点,若要两个交点在不同象限,则在第一、四象限,即两交点的纵坐标符号相反,通过联立得到,令其小于0,是否关注“判别式”大于零是易错点.【举一反三】已知直线与椭圆相交于两点,且(为坐标原点),若椭圆的离心率,则的最大值为_类型四 利用基本不等式求范围【例4】如图,已知抛物线的焦点为,直线过且依次交抛物线及圆
5、于点四点,则的最小值为( ) A B C D 【指点迷津】(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关利用定义可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径(2)圆锥曲线中的最值问题,可利用基本不等式求解,但要注意不等式成立的条件【举一反三】【1.河南省安阳市2019届高考一模】已知双曲线的一个焦点恰为圆:的圆心,且双曲线C的渐近线方程为点P在双曲线C的右支上,分别为双曲线C的左、右焦点,则当取得最小值时,()A2B4C6D82.【四川省凉山州市2019届高三第二次诊断】已知抛物线:的
6、焦点为,过点分别作两条直线,直线与抛物线交于、两点,直线与抛物线交于、两点,若与的斜率的平方和为,则的最小值为_类型五 构建目标函数,确定函数值范围或最值【例5】【上海市交大附中2019届高考一模】过直线上任意点向圆作两条切线,切点分别为,线段AB的中点为,则点到直线的距离的取值范围为_【指点迷津】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决【举一反三】1.【2019届高三第二次全国大联考】已知椭圆的右焦点为,左顶点为,上顶点为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95874.html