专题4.4 立体几何中最值问题高考数学选填题压轴题突破讲义(解析版)
《专题4.4 立体几何中最值问题高考数学选填题压轴题突破讲义(解析版)》由会员分享,可在线阅读,更多相关《专题4.4 立体几何中最值问题高考数学选填题压轴题突破讲义(解析版)(26页珍藏版)》请在七七文库上搜索。
1、一方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间
2、向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二解题策略类型一 距离最值问题【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCDA1B1C1D1中,点E、F分别在棱AA1和AB上,且C1EEF,则|AF|的最大值为()AB1CD2【答案】B【解析】以AB,AD,AA1所在直线为x,y,z轴,建立空间直角坐标系如图所示,则C1(4,4,4),设E(0,0,z),z0,4,F(x,0,0),x0,4,则|AF|x(4,4,4z),(x,0,
3、z)因为C1EEF,所以 ,即:z2+4x4z0,xz当z2时,x取得最大值为1|AF|的最大值为1故选:B【指点迷津】建立空间直角坐标系,求出坐标,利用C1EEF,求出|AF|满足的关系式,然后求出最大值即可利用向量法得到|AF|的关系式是解题的关键,故选D.【举一反三】1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为A B C D【答案】A【解析】解:根据三视图知,该几何体是一个正四棱锥,画出图形如图所示;则,底面CDEB,结合图形中的数据,求得,在中,由勾股定理得,同理求得,故选:A2、【河南省顶级名校2019届高三第四次联合测评】在侧棱
4、长为的正三棱锥中,侧棱OA,OB,OC两两垂直,现有一小球P在该几何体内,则小球P最大的半径为ABCD【答案】B【解析】当小球与三个侧面,及底面都相切时,小球的体积最大此时小球的半径最大,即该小球为正三棱锥的内切球设其半径为 由题可知因此本题正确选项:3、如右图所示,在棱长为2的正方体中, 为棱的中点,点分别为面和线段上的动点,则周长的最小值为_ 【答案】【解析】将面与面折成一个平面,设E关于的对称点为M,E关于 对称点为N,则周长的最小值为. 类型二 面积的最值问题【例2】【河南省郑州市2019年高三第二次质量检测】在长方体中,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形
5、面积的最小值为( )ABCD【答案】C【解析】补全截面EFG为截面EFGHQR如图,其中H、Q、R分别为、的中点,易证平面ACD1平面EFGHQR,直线D1P与平面EFG不存在公共点, D1P面ACD1,D1P面ACD1,PAC,过P作AC的垂线,垂足为K,则BK=,此时BP最短,PBB1的面积最小,三角形面积的最小值为,故选:C【指点迷津】截面问题,往往涉及线面平行,面面平行定义的应用等,考查空间想象能力、逻辑思维能力及计算求解能力.解题的关键是注意明确截面形状,确定几何量.本题由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P所在线段,得解【举一反三】1、【
6、湖南省衡阳市2019届高三二模】如图,直角三角形,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为( )ABCD【答案】B【解析】如图,分别为,的中点,作面,作面,连,易知点即为四面体的外接球心,.设,则,.【处理一】消元化为二次函数.【处理二】柯西不等式.所以.2、如图,在正四棱柱中,点是平面内的一个动点,则三棱锥的正视图与俯视图的面积之比的最大值为( )A1 B2 C D【答案】B 的正视图与俯视图的面积之比的最大值为2;故选B3、【福建省2019届高三模拟】若某几何体的三视图如图所示,则该几何体的所有侧面和底面中,面积的最大值为( )A2BC3D【答案】C【解析】由
7、三视图可得,该几何体的直观图如图所示,其中,为的中点,平面,.所以,.又因为,所以,故,所以.故选C.类型三 体积的最值问题【例3】如图,已知平面平面,、是直线上的两点,、是平面内的两点,且,是平面上的一动点,且有,则四棱锥体积的最大值是( )A. B. C. D. 【答案】A【指点迷津】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题. 求最值的常见方法有配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;换元法;不等式法;单调性法;图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法解答的.【举一反三】
8、1、已知与是四面体中相互垂直的棱,若,且,则四面体的体积的最大值是A. B. C. D. 【答案】A 2、如图,已知平面,、是上的两个点,、在平面内,且,在平面上有一个动点,使得,则体积的最大值是( ) A. B. C. D.【答案】C【解析】.和均为直角三角形.&网过作,垂足为.则.令,.则,即,.底面四边形为直角梯形面积为.&网.故C正确.3.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】已知一个高为l的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,内有 一个体积为的球,则的最大值为( )ABCD【答案】A【解析】依题意,当球与三棱锥的四个面都相切时,球的体积最大,该
9、三棱锥侧面的斜高为,所以三棱锥的表面积为,设三棱锥的内切球半径为,则三棱锥的体积,所以,所以,所以,故选A.类型四 角的最值问题【例4】如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点.设异面直线EM与AF所成的角为,则的最大值为.【答案】【解析】建立坐标系如图所示.设,则.设,则,由于异面直线所成角的范围为,所以.,令,则,当时取等号.所以,当时,取得最大值.【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.
10、当点M在点P处时,EM与AF所成角为直角,此时余弦值为0(最小),当点M向左移动时,.EM与AF所成角逐渐变小,点M到达点Q时,角最小,余弦值最大.【举一反三】1、矩形ABCD中,将ABC与ADC沿AC所在的直线进行随意翻折,在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为( )A. B. C. D. 【答案】C 2、在正方体中,是中点,点在线段上,直线与平面所成的角为,则的取值范围是( )A B C D【答案】A3.【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】如图,在正方体中,点P为AD的中点,点Q为上的动点,给出下列说法:可能与平面平行;与BC所成的最大角为
11、;与PQ一定垂直;与所成的最大角的正切值为;其中正确的有_写出所有正确命题的序号【答案】【解析】解:由在棱长为1的正方体中点P为AD的中点,点Q为上的动点,知:在中,当Q为的中点时,由线面平行的判定定理可得PQ与平面平行,故正确;在中,当Q为的中点时,可得,故错误;在中,由,可得平面,即有,故正确;在中,如图,点M为中点,PQ与所成的角即为PQ与所成的角,当Q与,或重合时,PQ与所成的角最大,其正切值为,故正确;在中,当Q为的中点时,PQ的长取得最小值,且长为,故正确故答案为:4、在正四面体中,点是棱的中点,点是线段上一动点,且,设异面直线与所成角为,当时,则的取值范围是_【答案】【解析】设P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95884.html