专题3.3 数列与函数、不等式相结合问题高考数学选填题压轴题突破讲义(原卷版)
《专题3.3 数列与函数、不等式相结合问题高考数学选填题压轴题突破讲义(原卷版)》由会员分享,可在线阅读,更多相关《专题3.3 数列与函数、不等式相结合问题高考数学选填题压轴题突破讲义(原卷版)(7页珍藏版)》请在七七文库上搜索。
1、一方法综述 数列与函数、不等式相结合是数列高考中的热点问题,难度较大,求数列与函数、不等式相结合问题时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列中的恒成立问题、数列中的最值问题、数列性质的综合问题、数列与函数的综合问题、数列与其他知识综合问题中都有所涉及,本讲就这类问题进行分析.二解题策略类型一 数列中的恒成立问题【例1】【安徽省毛坦厂中学2019届高三校区4月联考】已知等差数列满足,数列满足,记数列的前项和为,若对于任意的,不等式恒成立,则实数的取值范围为( )ABCD【指点迷津】对于
2、数列中的恒成立问题,仍要转化为求最值的问题求解,解答本题的关键是由等差数列通项公式可得,进而由递推关系可得,借助裂项相消法得到,又,问题等价于对任意的,恒成立.【举一反三】已知数列的首项,其前项和为,且满足,若对任意恒成立,则的取值范围是( )A B C D类型二 数列中的最值问题【例2】【浙江省湖州三校2019年高考模拟】已知数列满足,则使的正整数的最小值是( )A2018B2019C2020D2021【指点迷津】本题利用数列的递推公式,确定数列的单调性,令,利用裂项相消法得,再根据范围求正整数的最小值.在解题时需要一定的逻辑运算与推理的能力,其中确定数列单调性是解题的关键【举一反三】【河南
3、省许昌市、洛阳市2019届高三三模】已知数列,的前项和分别为,且,若恒成立,则的最小值为( )ABC49D类型三 数列性质的综合问题【例3】【江苏省扬州中学2019届高三下学期3月月考】已知等差数列的前n项和为,若13,36,则的取值范围是_【指点迷津】1.本题先根据求出的取值范围,然后根据不等式的性质可得所求结果.2.由数列的递推公式求通项常用的方法有:(1)累加法(相邻两项的差成等差、等比数列);累乘法(相邻两项的积为特殊数列);(3)构造法,形如的递推数列求通项往往用构造法,即将利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得出的通项公式.【举一反三】【广东省汕尾市2019年
4、3月高三检测】已知数列的首项为数列的前项和若恒成立,则的最小值为_类型四 数列与函数的综合问题【例4】已知函数的定义域为,当时,且对任意的实数,恒成立,若数列满足()且,则下列结论成立的是( )ABCD【指点迷津】(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去“f”,即将函数值的大小转化自变量大小关系, 对称性可得到两个对称的自变量所对应函数值关系.【举一反三】【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95898.html