专题3.2 动点轨迹成曲线坐标关系是关键高考数学解答题压轴题突破讲义(原卷版)
《专题3.2 动点轨迹成曲线坐标关系是关键高考数学解答题压轴题突破讲义(原卷版)》由会员分享,可在线阅读,更多相关《专题3.2 动点轨迹成曲线坐标关系是关键高考数学解答题压轴题突破讲义(原卷版)(10页珍藏版)》请在七七文库上搜索。
1、专题2 动点轨迹成曲线,坐标关系是关键【题型综述】1.动点轨迹问题解题策略一般有以下几种:(1) 直译法:一般步骤为:建系,建立适当的坐标系;设点,设轨迹上的任一点P(x,y);列式,列出动点P所满足的关系式;代换,依条件式的特点,选用距离公式、斜率公式等将其转化为x,y的方程式,并化简;证明,证明所求方程即为符合条件的动点轨迹方程.(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3)代入法(相关点法):动点P(x,y)依赖于另一动点Q(x0,y0)的变化而变化,并且Q(x0,y0)又在某已知曲线上,则可先用x,y的代数式表示x0,y0,再将x0,
2、y0代入已知曲线得要求的轨迹方程;(4)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x,y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程2.解轨迹问题注意:(1)求点的轨迹与求轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等.(2)要验证曲线上的点是否都满足方程,以方程解为坐标点是否都在曲线上,补上在曲线上而不满足方程解得点,去掉满足方程的解而不再曲线上的点.【典例指引】类型一 代点法求轨迹方程例1 【2017课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足。(1
3、) 求点P的轨迹方程;(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线l过C的左焦点F。 【解析】类型二 定义法求轨迹方程例2.【2016高考新课标1卷】设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围. 【解析】类型三 参数法求轨迹方程例32016高考新课标文数已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点(I)若在线段上,是的中点,证
4、明;(II)若的面积是的面积的两倍,求中点的轨迹方程.【解析】类型四 直译法求轨迹方程 例4. 已知动圆过点,且在轴上截得的弦长为()求圆心的轨迹方程;()过点的直线交轨迹于两点,证明: 为定值,并求出这个定值.【解析】 点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【扩展链接】1.若一个圆内含于另一个圆,则与大圆内切与小圆外切的圆的圆心的轨迹为一椭圆,两圆的圆
5、心为焦点,其长轴长为两圆半径之和;2.在一个圆内有一点,则过该点且与已知圆相切的圆的圆心的点的轨迹为一椭圆,且其长轴长为已知圆的半径。过两点的两条直线的斜率之积为一负常数的点的轨迹为一椭圆(两点除外)。两定点为椭圆的顶点,两定点间的距离为长轴长。(时,焦点在x轴上;当 时,焦点在y轴上)将圆的横坐标(或纵坐标)拉伸或缩短为原来的倍,该圆变成椭圆;连接圆内一定点与圆上任一点的线段的垂直平分线与圆上该点到圆心的连线的交点的轨迹为一椭圆。方椭圆的长半轴与圆的半径长相等;两个同心圆较大圆上任一点与圆心的连线与小圆交于一点,从大圆上该点作x轴的垂线, 则过小圆交点向该垂线作垂线,其垂足的点的轨迹为椭圆。
6、【新题展示】1【2019河南郑州一模(节选)】设点为圆上的动点,点在轴上的投影为,动点满足,动点的轨迹为()求的方程;【思路引导】()设P(x,y),M(x0,y0),由已知条件建立二者之间的关系,利用坐标转移法可得轨迹方程;2【2019四川绵阳二诊】己知椭圆C:的左右焦点分别为F1,F2,直线l:ykx+m与椭圆C交于A,B两点O为坐标原点(1)若直线l过点F1,且AF2十BF2 ,求直线l的方程;(2)若以AB为直径的圆过点O,点P是线段AB上的点,满足OPAB,求点P的轨迹方程【思路引导】(1)设A(x1,y1),B(x2,y2)联立 整理得(1+2k2)x2+8k2x+8k2-8=0根
7、据弦长公式|AB|=,代入整理得,解得得到直线l的方程 (2)设直线l方程y=kx+m,A(x1,y1),B(x2,y2)联立整理得(2k2+1)x2+4kmx+2m2-8=0结合韦达定理及条件,整理得3m2=8k2+8从而有 |OP|2=(定值),得到点P的轨迹是圆,且去掉圆与x轴的交点写出点P的轨迹方程即可3【2019安徽江南十校第二次联考】已知两个定点,动点到点的距离是它到点距离的2倍(1)求点的轨迹;(2)若过点作轨迹的切线,求此切线的方程【思路引导】(1)利用两点间的距离公式列方程,化简后可求得轨迹的方程(2)由于轨迹是圆,故设切线方程为点斜式,然后利用圆心到直线的距离等于半径列方程
8、,求得切线的斜率验证斜率不存在时直线也满足题意,由此求得题目所求的切线方程,有两条4【2019湖北黄冈、华师附中等八校联考(节选)】已知点,的两顶点,且点满足(1)求动点的轨迹方程;(2)设,求动点的轨迹方程;【思路引导】(1)设出点的坐标,代入,化简后求得动点的轨迹方程(2)设出点的坐标,利用向量相等列方程,转化为的坐标,代入(1)中的方程可求得的方程5【2019广东江门调研(节选)】在平面直角坐标系中,为不在轴上的动点,直线、的斜率满足(1)求动点的轨迹的方程;【思路引导】(1)设,将利用斜率公式进行化简整理即可得点P轨迹方程;6【2019广西柳州1月模拟(节选)】已知点,直线为平面内的动
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95934.html