专题3.1 待定系数求方程几何转至代数中高考数学解答题压轴题突破讲义(解析版)
《专题3.1 待定系数求方程几何转至代数中高考数学解答题压轴题突破讲义(解析版)》由会员分享,可在线阅读,更多相关《专题3.1 待定系数求方程几何转至代数中高考数学解答题压轴题突破讲义(解析版)(24页珍藏版)》请在七七文库上搜索。
1、求圆锥曲线方程的策略一般有以下几种:几何分析法方程思想;设而不求韦达定理;第二定义数形结合;参数法方程思想。几何分析法,利用图形结合圆锥曲线的定义与几何性质,分析图中已知量与未知量之间的关系,列出关于方程中参数的方程,解出参数值即可得到圆锥曲线方程,要求平面几何中相似等数学知识必须十分熟练。设而不求、韦达定理是解圆锥曲线问题的通性通法,缺点是计算量较大,费时费力,容易出错,通常根据题设条件,设出点的坐标和直线方程,将直线方程代入曲线方程,化为关于的一元二次方程,利用韦达定理用参数表示出来,根据题中条件列出关于参数的方程,通过解方程解出参数值,即可得出圆锥曲线的方程。不管是哪种方法,最终都要列出
2、关于圆锥曲线方程中的参数的方程问题,通过解方程解出参数值,即可得到圆锥曲线方程,故将利用平面几何知识和圆锥曲线的定义与性质是将几何问题转化为代数问题,简化解析几何计算的重要途径.【典例指引】类型一 待定系数法求椭圆方程 例1 【2014年全国课标,理20】设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.()若直线MN的斜率为,求C的离心率;()若直线MN在y轴上的截距为2,且,求a,b.【解析】()由题意得:,的斜率为,又,解之:或(舍)故直线的斜率为时,的离心率为.()(几何分析法)依据题意,原点为的中点,轴,与轴的交点是线段的中点,=,即,过作轴于,则,设,则
3、,=,联立解得,. 类型2 参数法求椭圆方程例2.【2015高考安徽,理20】设椭圆E的方程为,点O为坐标原点,点A的坐标为,点B的坐标为,点M在线段AB上,满足,直线OM的斜率为.(I)求E的离心率e;(II)设点C的坐标为,N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【解析】(I)由题设条件知,点的坐标为,又,从而,进而得,故. (II)(参数法)由题设条件和(I)的计算结果可得,直线的方程为,点的坐标为,设点关于直线的对称点的坐标为,则线段的中点的坐标为.又点在直线上,且,从而有解得,所以,故椭圆的方程为.(几何分析法)设关于的对称点为,根据椭圆的对称性知,由题设
4、条件和(I)知,=,=,=,N为线段AC的中点,解得,故椭圆的方程为.类型3 设而不求思想与韦达定理求抛物线方程例3【2013年高考数学湖南卷】过抛物线的焦点F作斜率分别为的两条不同的直线,且,相交于点A,B,相交于点C,D.以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为.(I)若,证明;(II)若点M到直线的距离的最小值为,求抛物线E的方程.【解析】(1)依题意,抛物线E的交点为,直线的方程为,由得,设A、B两点的坐标分别为,则是上述方程的两个实数根,从而,所以点M的坐标为,同理可得N的坐标为,于是,由题设,所以,故;(2)由抛物线的定义得所以从而圆M的半径,圆M的方程
5、为化简得,同理可得圆N的方程为,于是圆M与圆N的公共弦所在直线l的方程为,又,则直线l的方程为,因为,所以点M到直线l的距离,故当时,取最小值. 由题设,所以,故所求抛物线E的方程为类型4 待定系数法求抛物线方程例4 (2012全国课标理20).设抛物线:(0)的焦点为,准线为,为上一点,已知以为圆心,为半径的圆交于,两点.()若,的面积为,求的值及圆的方程;()若,三点在同一条直线上,直线与平行,且与只有一个公共点,求坐标原点到,距离的比值.【解析】设准线于轴的焦点为E,圆F的半径为,则|FE|=,=,E是BD的中点,() ,=,|BD|=,设A(,),根据抛物线定义得,|FA|=,的面积为
6、,=,解得=2,F(0,1), FA|=, 圆F的方程为:;() 【解析1】,三点在同一条直线上, 是圆的直径,,由抛物线定义知,的斜率为或,直线的方程为:,原点到直线的距离=,设直线的方程为:,代入得,与只有一个公共点, =,直线的方程为:,原点到直线的距离=,坐标原点到,距离的比值为3.【解析2】由对称性设,则点关于点对称得:得:,直线切点直线坐标原点到距离的比值为。【扩展链接】1. 焦点三角形面积公式:圆锥曲线的左右焦点分别为F1,F 2,点P为曲线上任意一点,(1)若P在椭圆上,则椭圆的焦点角形的面积为.(2)若P在双曲线上,则双曲线的焦点角形的面积为.2.椭圆(ab0)的焦半径公式:
7、,( , ).【新题展示】1【2019四川绵阳二诊(节选)】己知椭圆C:的左右焦点分别为F1,F2,直线l:ykx+m与椭圆C交于A,B两点O为坐标原点(1)若直线l过点F1,且AF2十BF2 ,求直线l的方程;【思路引导】(1)设A(x1,y1),B(x2,y2)联立 整理得(1+2k2)x2+8k2x+8k2-8=0根据弦长公式|AB|=,代入整理得,解得得到直线l的方程 【解析】(1)由椭圆定义得|AB|+|AF2|+|BF2|=4a=8,则|AB|= 因为直线l过点F1(-2,0),所以m=2k即直线l的方程为y=k(x+2)设A(x1,y1),B(x2,y2)联立 整理得(1+2k2
8、)x2+8k2x+8k2-8=0 x1+x2=,x1x2= 由弦长公式|AB|=,代入整理得,解得所以直线l的方程为,即或 2【2019广东省模(节选)】已知点,都在椭圆:上(1)求椭圆的方程;【思路引导】(1)把点,代入椭圆方程,得即可;【解析】(1)由题意得,得,故椭圆的方程为3【2019闽粤赣三省十校联考(节选)】已知椭圆经过点,离心率为,左右焦点分别为,(1)求椭圆的方程;【思路引导】(1)利用椭圆的离心率和椭圆上的点,构造关于的方程,求解得到椭圆方程;【解析】(1)因为椭圆经过点,所以,又因为,所以又,解得,所以椭圆的方程为4【2019四川凉山二诊(节选)】椭圆长轴右端点为,上顶点为
9、,为椭圆中心,为椭圆的右焦点,且,离心率为(1)求椭圆的标准方程;【思路引导】(1)由条件布列关于a,b的方程组,即可得到椭圆的标准方程;【解析】(1)设椭圆的方程为,半焦距为则、由,即,又,解得,椭圆的方程为5【2019陕西榆林一模(节选)】已知椭圆的离心率,左顶点到直线的距离,为坐标原点(1)求椭圆的方程;【思路引导】(1)结合离心率,计算出a,b,c之间的关系,利用点到直线距离,计算a,b值即可。【解析】(1)椭圆的离心率,即,椭圆的左顶点到直线,即到的距离,把代入得,解得,椭圆的方程为【同步训练】1设椭圆: ()的左右焦点分别为, ,下顶点为,直线的方程为.()求椭圆的离心率;()设为
10、椭圆上异于其顶点的一点, 到直线的距离为,且三角形的面积为,求椭圆的方程;【思路引导】() 由直线斜率为 可得 ,从而可得结果;()先求得 点坐标,根据三角形面积可得 的值,从而可得椭圆方程.【详细解析】由得.又因为三角形面积,所以,于是,椭圆的方程为.*网2已知抛物线()和定点,设过点的动直线交抛物线于两点,抛物线在处的切线交点为.()若在以为直径的圆上,求的值;()若三角形的面积最小值为4,求抛物线的方程.【思路引导】()设出直线方程,与抛物线方程联立,根据韦达定理,导数的几何意义,结合处的切线斜率乘积为可得结果;()根据弦长公式、点到直线距离公式以及三角形面积公式可以得到,从而可得结果.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-95941.html