专题2.12 已知函数增或减导数符号不改变高考数学解答题压轴题突破讲义(解析版)
《专题2.12 已知函数增或减导数符号不改变高考数学解答题压轴题突破讲义(解析版)》由会员分享,可在线阅读,更多相关《专题2.12 已知函数增或减导数符号不改变高考数学解答题压轴题突破讲义(解析版)(19页珍藏版)》请在七七文库上搜索。
1、【题型综述】用导数研究函数的单调性(1)用导数求函数的单调区间求函数的定义域求导解不等式0得解集求,得函数的单调递增(减)区间一般地,函数在某个区间可导,0在这个区间是增函数一般地,函数在某个区间可导,0在这个区间是减函数(2)单调性的应用(已知函数单调性)一般地,函数在某个区间可导,在这个区间是增(减)函数。常用思想方法:来源:ZXXK函数在某区间上单调递增,说明导数大于或等于零恒成立,而函数在某区间上单调递减,说明导数小于或等于零恒成立【典例指引】例1已知函数, 若曲线在点处的切线经过点,求实数的值; 若函数在区间上单调,求实数的取值范围来源:Z+X+X+K【思路引导】(1)根据题意,对函
2、数求导,由导数的几何意义分析可得曲线 在点处的切线方程,代入点,计算可得答案;(2)由函数的导数与函数单调性的关系,分函数在(上单调增与单调减两种情况讨论,综合即可得答案; 若函数在区间上单调递增,则在恒成立,得; &网若函数在区间上单调递减,则在恒成立,得, 综上,实数的取值范围为例2已知函数(x0)(1)当时,求函数的单调区间;(2)若在上是单调增函数,求实数a的取值范围【思路引导】(1)函数求导,令得函数增区间,令得函数的减区间;(2)函数为上单调增函数,只需在上恒成立即可点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应
3、用的考查都非常突出导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用例3已知函数(1)若曲线在点处的切线的倾斜角为,求实数的值;(2)若函数在区间上单调递增,求实数的范围【思路引导】(1)根据切线的倾斜角为得到切线的斜率,根据导数的几何意义可以知道处的导数即为切线的斜率,建立等量关系,求出a即可;(2)根据函数在区间上单调递增,可转化成,对恒成立,将参
4、数a分离,转化成当时,不等式恒成立,利用均值不等式求出不等式右边函数的最小值,进而得实数a的范围【新题展示】1【2019贵州遵义联考】已知函数.(1)当时,求函数的极值;(2)若函数在区间上是减函数,求实数的取值范围.【思路引导】(1)当时,利用函数的导数,求得函数的单调区间,由此求得函数的极值.(2)依题意可知函数在区间上的导函数为非正数,列不等式后利用分离常数法,求解出的取值范围.【解析】(1)当时, , ,由解得,由解得,故当时,的单调递增;当时,单调递减,当时,函数取得极大值,无极小值.2【2019陕西西安市期末】已知函数(1)求的极值;(2)若函数在定义域内为增函数,求实数的取值范围
5、.【思路引导】(1)由已知可得,求出其导函数,解得导函数的零点,由导函数的零点对定义域分段,求得函数的单调区间,进一步求得极值(2)由函数在定义域内为增函数,可得恒成立,分离参数,利用基本不等式求得最值可得答案【解析】(2),由题意可知恒成立,即时,当且仅当时等号成立,故,则【同步训练】1已知函数(1)若的图像在处的切线与轴平行,求的极值;(2)若函数在内单调递增,求实数的取值范围【思路引导】(1)求出,由求得,研究函数的单调性,即可求得的极值;(2)化简,可得,对求实数分三种情况讨论,分别利用导数研究函数的单调性,验证函数在内是否单调递增即可得结果 (2),则 设,当时,当时,当时, ,所以
6、在内单调递增,在内单调递减,不满足条件;当时,是开口向下的抛物线,方程有两个实根,设较大实根为当时,有,即,所以在内单调递减,故不符合条件;当时,由可得在内恒成立,&网故只需或,即或,解之得综上可知,实数的取值范围是&网2已知函数(1)若在上递增,求的取值范围;来源:Zxxk.Com(2)证明:【思路引导】(1)要使在上递增,只需,且不恒等于0,所以先求得函数的增区间, 是增区间的子区间(2)当时, , 显然成立 当时,即证明 ,令(),即求,由导数可证,即综上, 3已知函数(1)若曲线与曲线在它们的公共点处具有公共切线,求的表达式;(2)若在上是减函数,求实数的取值范围【思路引导】(1)求出
7、函数f(x)的导数,得到关于a的方程,求出a的值,计算g(1)=0,求出b的值,从而求出g(x)的解析式即可;(2)求出函数的导数,问题转化为,x1,+),根据函数的单调性求出m的范围即可点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为: 若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为4设函数(1)若时,取得极值,求的值;(2)若在其定义域内为增函数,求的取值范围【思路引导】(1)先求函数的导函数,根据若时,取得极值得,解之即可;(2)在其定义域内为增函数可转化成只需在内有恒成立,根据
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题
链接地址:https://www.77wenku.com/p-96019.html