专题01 极值点的关系证明高考数学压轴题典例剖析(解析版)
《专题01 极值点的关系证明高考数学压轴题典例剖析(解析版)》由会员分享,可在线阅读,更多相关《专题01 极值点的关系证明高考数学压轴题典例剖析(解析版)(9页珍藏版)》请在七七文库上搜索。
1、专题01 极值点的关系证明极值点的关系证明是今年高考的热点和难点,其关键在于根据极值的必要条件确定极值点的关系,再通过极值的加减,运算整理,构造函数,再利用导数求最值即可证明。以下给出四个例子及两个练习。【题型示例】1、已知函数,其中为正实数 (1)若函数在处的切线斜率为,求的值;(2)求函数的单调区间;(3)若函数有两个极值点,求证:【答案】(1)(2)单调减区间为,单调减区间为(3)见解析【解析】(1)因为,所以,则,所以的值为(2),函数的定义域为,若,即,则,此时的单调减区间为;若,即,则的两根为,此时的单调减区间为,单调减区间为(3)由(2)知,当时,函数有两个极值点,且因为要证,只
2、需证构造函数,则,在上单调递增,又,且在定义域上不间断,由零点存在定理,可知在上唯一实根, 且则在上递减,上递增,所以的最小值为因为,当时,则,所以恒成立所以,所以,得证2、已知。=网(1)若时,在上为单调递增函数,求实数的取值范围.(2)若,存在两个极值点,且,求实数的取值范围.【答案】(1);(2).【解析】(1)当时,在上为单调递增函数,即,只需满足即可,即.(2),令,时,无极值点,时,令得:或,由的定义域可知,且,且,解得:,为的两个极值点,即,且,得:,令,时,在递减,时,不合题意,综上,.3、已知函数(1)当时,求的极值;(2)讨论的单调性;(3)设有两个极值点,若过两点,的直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题01 极值点的关系证明高考数学压轴题典例剖析解析版 专题 01 极值 关系 证明 高考 数学 压轴 题典例 剖析 解析
链接地址:https://www.77wenku.com/p-96200.html