专题02 “三招五法”轻松破解含参零点问题(第一篇)-2019年高考数学压轴题命题区间探究与突破(原卷版)
《专题02 “三招五法”轻松破解含参零点问题(第一篇)-2019年高考数学压轴题命题区间探究与突破(原卷版)》由会员分享,可在线阅读,更多相关《专题02 “三招五法”轻松破解含参零点问题(第一篇)-2019年高考数学压轴题命题区间探究与突破(原卷版)(4页珍藏版)》请在七七文库上搜索。
1、一方法综述 函数的含参零点问题是高考热门题型,既能很好地考查函数、导数、方程与不等式等基础知识,又能考查分类讨论、数形结合、转化与化归等思想方法,所以此类题往往能较好地体现试卷的区分度,往往出现在压轴题的位置.正因为如此,根据函数的零点情况,讨论参数的范围成为高考的难点对于此类题目,我们常利用零点存在定理、函数的性质,特别是函数单调性(可借助于导数)探寻解题思路,或利用数形结合思想、分离参数方法来求解具体的,(1)分类讨论参数的不同取值情况,研究零点的个数或取值;(2)利用零点存在的判定定理构建不等式求解;(3)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图
2、象与参数的交点个数;(4)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.二解题策略类型一 “第一招”带参讨论【例1】【湖南省澧县一中2018届一轮第一次检测】已知函数f(x)=,如果函数f(x)恰有两个零点,那么实数m的取值范围为_【指点迷津】1. 根据题设要求研究函数的性质,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;2.由于函数含有参数,通常需要合理地对参数的取值进行分类讨论,并逐一求解 【举一反三】【江苏省扬州中学2019届高三10月月考】已知定义在上的函数可以表示为一个偶函数与一个奇函数之和,设 若方程无实根,则实数的取值范围是_类型二 “第二招”数
3、形结合【例2】【2018年天津卷理】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是_.【指点迷津】1.由两个基本初等函数组合而得的超越函数f(x)g(x)h(x)的零点个数,等价于方程g(x)h(x)0的解的个数,亦即g(x)h(x)的解的个数,进而转化为基本初等函数yg(x)与yh(x)的图象的交点个数2.先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题交点的横坐标即零点.【举一反三】【2019届同步单元双基双测AB卷】已知函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题02 “三招五法”轻松破解含参零点问题第一篇-2019年高考数学压轴题命题区间探究与突破原卷版 专题 02 三招五法 轻松 破解 零点 问题 一篇 2019 年高 数学 压轴 命题 区间 探究
链接地址:https://www.77wenku.com/p-96847.html