专题01 “四招”判断函数零点个数-2019年高考数学压轴题之函数零点问题(原卷版)
《专题01 “四招”判断函数零点个数-2019年高考数学压轴题之函数零点问题(原卷版)》由会员分享,可在线阅读,更多相关《专题01 “四招”判断函数零点个数-2019年高考数学压轴题之函数零点问题(原卷版)(4页珍藏版)》请在七七文库上搜索。
1、专题一 “四招”判断函数零点个数函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕函数零点个数的判断问题,例题说法,高效训练.【典型例题】第一招 应用函数性质,判定函数零点个数例1.已知偶函数,且,则函数在区间的零点个数为( )A. 2020 B. 2016 C. 1010 D. 1008第二招 数
2、形结合,判定函数零点个数例2.【2018届福建省永春一中、培元、季延、石光中学四校高三上第二次联考】定义在上的函数满足,且时, ; 时, . 令,则函数的零点个数为( )A. B. C. D. 第三招 应用零点存在性定理,判定函数零点个数来源:ZXXK例3.【广西桂林市、贺州市、崇左市2019届高三下学期3月联合调研】已知函数.(1)讨论的单调性;(2)讨论在上的零点个数.第四招 构造函数,判定函数零点个数例4【山东省菏泽市2019届高三上学期期末】已知函数f(x)lnx+1,aR.(1)当a0时,若函数f(x)在区间1,3上的最小值为,求a的值;(2)讨论函数g(x)f(x)零点的个数.【规
3、律与方法】函数零点个数的求解与判断:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间上是连续不断的曲线,且,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点(4)构造函数模型,判断零点个数.构造函数可根据题目不同,直接做差构造函数、分离参数后构造函数、先求导数再构造函数、先换元再构造函数等. 【提升训练】1【浙江省杭州地区(含周边)重点中学2019届高三上期中】已知定义在R上的奇函数,满足当时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题01 “四招”判断函数零点个数-2019年高考数学压轴题之函数零点问题原卷版 专题 01 判断 函数 零点 个数 2019 年高 数学 压轴 问题 原卷版
链接地址:https://www.77wenku.com/p-96949.html