专题06 重温高考压轴题----函数零点问题集锦-2019年高考数学压轴题之函数零点问题(解析版)
《专题06 重温高考压轴题----函数零点问题集锦-2019年高考数学压轴题之函数零点问题(解析版)》由会员分享,可在线阅读,更多相关《专题06 重温高考压轴题----函数零点问题集锦-2019年高考数学压轴题之函数零点问题(解析版)(24页珍藏版)》请在七七文库上搜索。
1、专题六 重温高考压轴题-函数零点问题集锦函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力.【典型例题】类型一 已知零点个数,求参数的值或取值范围例1.【2018年理新课标I卷】已知函数 若g(
2、x)存在2个零点,则a的取值范围是A. 1,0) B. 0,+) C. 1,+) D. 1,+)【答案】C【解析】画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.例2.【2018年理数全国卷II】已知函数(1)若,证明:当时,;(2)若在只有一个零点,求【答案】(1)见解析(2)【解析】(1)当时,等价于设函数,则当时,所以在单调递减而,故当时,即(2)设函数在只有一个零点当且仅当在只有一个零点(i)当时,没有零点
3、;(ii)当时,当时,;当时,所以在单调递减,在单调递增故是在的最小值若,即,在没有零点;若,即,在只有一个零点;若,即,由于,所以在有一个零点,由(1)知,当时,所以故在有一个零点,因此在有两个零点综上,在只有一个零点时,类型二 利用导数确定函数零点的个数例3.【2018年全国卷II文】已知函数(1)若,求的单调区间;(2)证明:只有一个零点【答案】(1)f(x)在(,),(,+)单调递增,在(,)单调递减(2)f(x)只有一个零点【解析】(1)当a=3时,f(x)=,f (x)=令f (x)=0解得x=或x=当x(,)(,+)时,f (x)0;当x(,)时,f (x)1.(I)求函数的单调
4、区间;(II)若曲线在点处的切线与曲线在点 处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.【答案】()单调递减区间,单调递增区间为;()证明见解析;()证明见解析.【解析】(I)由已知,有.令,解得x=0.由a1,可知当x变化时,的变化情况如下表:x00+极小值所以函数的单调递减区间,单调递增区间为.(II)由,可得曲线在点处的切线斜率为.由,可得曲线在点处的切线斜率为.因为这两条切线平行,故有,即.两边取以a为底的对数,得,所以.(III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明
5、当时,存在,使得l1和l2重合.即只需证明当时,方程组有解,由得,代入,得. 因此,只需证明当时,关于x1的方程存在实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,故存在唯一的x0,且x00,使得,即.由此可得在上单调递增,在上单调递减. 在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.【规律与方法】1.研究方程根的情况时,通过导数研究函数的单调性、最大(小)值、函数图象的变化趋势等,根据题目画出函数图象的草图,通过数形结合的思想去
6、分析问题,使问题的解决有一个直观的形象,然后在此基础上再转化为不等式(组)的问题,通过求解不等式可得到所求的参数的取值(或范围)2. 利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.3. 导数中函数的含参数的问题的讨论,需要考虑下面的几个方面:(1)把导函数充分变形,找出决定导数符号的核心代数式,讨论其零点是否存在,零点是否在给定的范围中;(2)零点不容易求得时,需要结合原函数的
7、形式去讨论,有时甚至需要把原函数放缩去讨论,常见的放缩有等;(3)如果导数也比较复杂,可以进一步求导,讨论导函数的导数.4. 对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要通过论坛和联系多加体会.5. 函数有零点等价于相应的方程有实根,然后将方程进行适当的变形,转化为两个函数图象有交点.交点的个数就是函数零点个数.在实际解题中,通常先求出,然后令,移项,转化为判断两个函数图象的交点个数.【提升训练】1.【2019届高三第一次全国大联考】若函数恰有三个零点,则的取值范围为( )AB()
8、CD()【答案】D【解析】当时,为减函数,令易得,所以只需有两个零点,令则问题可转化为函数的图象与的图象有两个交点.求导可得,令,即,可解得;令,即,可解得,所以当时,函数单调递减;当时,函数单调递增,由此可知当时,函数取得最小值,即在同一坐标系中作出函数与的简图如图所示,根据图可得故选D.2.【2017课标3,理11】已知函数有唯一零点,则a=ABCD1【答案】C【解析】函数的零点满足,设,则,当时,当时,函数 单调递减,当时,函数 单调递增,当时,函数取得最小值,设 ,当时,函数取得最小值 ,3.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是_.【答案】
9、【解析】分类讨论:当时,方程即,整理可得:,很明显不是方程的实数解,则,当时,方程即,整理可得:,很明显不是方程的实数解,则,令,其中,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.4【2018年江苏卷】若函数在内有且只有一个零点,则在上的最大值与最小值的和为_【答案】3【解析】由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以 , 5.【2018年天津卷文】设函数,其中,且是公差为的等差数列.(I)若 求曲线在点处的切线方程;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题06 重温高考压轴题-函数零点问题集锦-2019年高考数学压轴题之函数零点问题解析版 专题 06 重温 高考 压轴 函数 零点 问题 集锦 2019 年高 数学 解析
链接地址:https://www.77wenku.com/p-96956.html