《浙教版七年级上数学期中试卷及答案002》由会员分享,可在线阅读,更多相关《浙教版七年级上数学期中试卷及答案002(10页珍藏版)》请在七七文库上搜索。
1、浙教版七年级上数学期中试卷一、选择题(共10题;共20分)1.某速冻汤圆的储藏温度是-182,现有四个冷藏室的温度如下,则不适合此种汤圆的温度是( ) A. -17 &nbs
2、p;B. -22 C. -18
3、 D. -192.下列运算错误的是( ) A. (-3)=3(3) B. -5(-)=5(2) C. 8-(-2)=8+2 &nb
4、sp;D. 03=03.下列实数中是无理数的是( ) A. B.
5、 C. &nbs
6、p; D. ( )04.徐州市2018年元旦长跑全程约为7.5103m,该近似数精确到( ) A. 1000m B. 100m &n
7、bsp; C. 1m D. 0.1m5.如图,数轴上两点A,B表示的
8、数互为相反数,则点B表示的数为( )A. 6 B. 6
9、 C. 0 &nb
10、sp; D. 无法确定6. 的平方根是( ) A.2 B.2 C.2 D.47.的绝对值是( ) A. B.  
11、; C.2018 D.8.计算 的结果是( ) A. &nb
12、sp; B. C. 1 &nbs
13、p; D. 19.的倒数等于( ) A. -1 &nbs
14、p; B. 1 C. 2018 &
15、nbsp; D. -201810.如果- 是数a的立方根,- 是b的一个平方根,则a10b9等于( ) A. 2 &
16、nbsp; B. -2 &nb
17、sp; C. 1 D. -1二、填空题(共6题;共6分)11.把有理数 , ,|- |, 按从小到大的顺序用“<”连接为_. 12.某城市10月5日最低气温
18、为2,最高气温9,那么该城市这天的温差是_ 13.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_ 14.若x-1是125的立方根,则x-7的立方根是_. 15.若a,b互为倒数,c,d互为相反数,则2c+2d3ab的值为_ 16.正方形ABCD在数轴上的位置如图,点A、D对应的数分别为0和-1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转
19、2019次后,数轴上数2019所对应的点是_;三、解答题(共7题;共47分)17.计算: 18.已知a的相反数是5,|b|=4,求|a+b|ab|的值 19.计算 20.书店、学校、医院、银行依次坐落在一条东西走向的大街上,书店在学校西边20 m处,银行在学校东边100 m处,医院在银行西边60 m处 (1)以学校O的位置为原点,画数轴,并将书店、医院、银行的位置用A,B,C分别表示在这个数轴上 (2)若小明从学校沿街向东行50 m,又向东行70 m,求此时小明的位置 21.体育委员给王磊、
20、赵立两位的身高都记为1.7102cm,可有的同学说王磊比赵立高9cm,这种情况可能吗?请说明你的理由 22.有人说,将一张纸对折,再对折,重复下去,第43次后纸的厚度便超过地球到月球的距离,已知一张纸厚0.006cm,地球到月球的距离约为3.85108m,用计算器算一下这种说法是否可信 23.阅读下面的文字,解答问题:大家知道 是无理数,而无理数是无限不循环小数,因此 的小数部分我们不可能全部写出来,于是小明用 来表示 的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为 的整数部分是1,将这个数减去其整数部分,差就是小
21、数部分又例如:2273,即2 3, 的整数部分为2,小数部分为 2请解答: (1)的整数部分是_,小数部分是_ (2)如果 的小数部分为a, 的整数部分为b,求a+b- 的值; (3)已知:x是3+ 的整数部分,y是其小数部分,请直接写出xy的值的相反数 参考答案一、选择题1.【答案】B 【考点】正数和负数的认识及应用 【解析】【解答】解:182=20,18+2=16,温度范围:20至16;A201716,故A不符合题意;B2220,故B符合题意;C201816,故
22、C不符合题意;D201916,故D不符合题意;故答案为:B【分析】由速冻汤圆的储藏温度是-182,得到温度范围是20至16.2.【答案】A 【考点】有理数的减法,有理数的加减混合运算,有理数的除法 【解析】【分析】利用有理数的加减运算以及除法运算进而分别分析得出即可【解答】A、(-3)=(-)=-,错误,故此选项符合题意;B、-5(-)=-5(-2),正确,不合题意;C、8-(-2)=8+2,正确,不合题意;D、03=0,正确,不合题意故选:A【点评】此题主要考查了有理数的加减运算以及除法运算,正确把握运算法则是解题关键3.【答案】C 【考点】无理数的认识
23、 【解析】【解答】解:因为无理数是无限不循环小数,故答案为:C.【分析】根据无理数的定义:无限不循环的小数是无理数,包括以及开不尽方的数。4.【答案】B 【考点】近似数及有效数字 【解析】【解答】7.5103km,它的有效数字为7、5,精确到百位故答案为:B【分析】7.5103它的有效数字是7和5,原数是7500,精确到百位.5.【答案】B 【考点】数轴及有理数在数轴上的表示,相反数及有理数的相反数 【解析】【解答】解:数轴上两点A,B表示的数互为相反数,点A表示的数为6,点B表示的数为6,故选B.【分析】根据数轴上点的位置,利
24、用相反数定义确定出B表示的数即可6.【答案】C 【考点】平方根,算术平方根 【解析】【解答】解:由题意可得 =4因为(2)2=4所以4的平方根为2即 的平方根为2.故答案为:C.【分析】要求的平方根就是求4的平方根,即可解答。7.【答案】C 【考点】绝对值及有理数的绝对值 【解析】【解答】解:数轴上表示数-2018的点到原点的距离是2018,所以-2018的绝对值是2018故答案为:C【分析】根据负数的绝对值等于它的相反数,可解答。8.【答案】A 【考点】绝对值及有理数的绝对值,有理数的减法 【解析】【解答】根据绝对
25、值的性质和有理数的减法法则可得,原式= ,故答案为:A【分析】根据绝对值的性质可知负数的绝对值等于它的相反数,再根据有理数减法法则减去一个数等于加上这个数的相反数,计算即可.9.【答案】B 【考点】有理数的倒数,有理数的乘方 【解析】【解答】解 :( 1 ) 2018=1 ,1的倒数是1.故选 B。【分析】首先根据乘方的意义算出( 1 ) 2018=1,再根据1的倒数就是它本身,即可得出答案。10.【答案】A 【考点】平方根,立方根及开立方,含乘方的有理数混合运算 【解析】【解答】解
26、: 由题意得,a=-2,b= 所以a10b9=(-2)10( )9=2,故答案为:A【分析】根据立方根的意义,a=-2,b=,从而代入代数式根据有理数的混合运算算出答案。二、填空题11.【答案】【考点】有理数大小比较 【解析】【解答】因为 =-9, =9, |- |=27,所以 【分析】计算各个式子的值,得到 32 =-9,( 3 )2 =9,|- 33 |=27,比较大小即可.12.【答案】11 【考点】有理数的减法 【解析】【解答】解:9(2)=9+2=11, 故答案为:11【分析】用最高温
27、度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解13.【答案】5.5108 【考点】科学记数法表示绝对值较大的数 【解析】【解答】解:5.5亿=5 5000 0000=5.5108 , 故答案为:5.5108 【分析】根据科学记数法的定义,科学记数法的表示形式为a10 n , 其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值。在确定n的值时,等于这个数的整数位数减1,14.【答案】1 【考点】立方根及开立方 【解析】【解答】解:x1是125的立方根,x1=5,x=6,x7=67=
28、1,x7的立方根是1故答案为:1【分析】由立方根的意义可得x1=5,解方程得x=6,则x-7的立方根可求解。15.【答案】-3 【考点】相反数及有理数的相反数,有理数的倒数,代数式求值 【解析】【解答】解:a,b互为倒数,c,d互为相反数,ab=1,c+d=0,则2c+2d3ab=2(c+d)31=3故答案为:3【分析】直接利用互为倒数的两数相乘积为1,互为相反数的两数相加和为0,进而代入原式求出答案16.【答案】D 【考点】数轴及有理数在数轴上的表示 【解析】【解答】每4次翻转为一个循环组依次循环,20194=5043,翻转2019次后点A
29、在数轴上,点A对应的数是2019-3=2016,数轴上数2019所对应的点是点D【分析】根据题意可得出每4次翻转为一个循环组依次循环,用20194,根据是否整除,可得出数轴上数2019所对应的点的位置。三、解答题17.【答案】解:原式=-1(-32-9+ )- =32+9- - =41-5=36. 【考点】含乘方的有理数混合运算 【解析】【分析】根据有理数的运算法则计算即可,先算平方,再算乘除,再算加减,如果有括号先算括号里面的.18.【答案】解:a的相反数是5,a=5|b|=4,b=4当a=5,b=4时,原式=|5+4|54|=19=8;当a=5,b=4时,原式=|
30、54|5+4|=91=8所以代数式|a+b|ab|的值为8或8 【考点】绝对值及有理数的绝对值,绝对值的非负性 【解析】【分析】由题意可得a=5,b=4,将a、b的值带入代数式计算即可求解。19.【答案】解:原式= = = = 【考点】算术平方根,立方根及开立方 【解析】【分析】根据算术平方根的意义和立方根的意义可求解。即原式=+2+=2.20.【答案】(1)解:(2)解:此时小明在书店. 【考点】数轴及有理数在数轴上的表示 【解析】【分析】(1)根据数轴的三要素画出数轴,由题意可求解;(2)小明从学校沿街向东行50 m,则在原
31、点右边50米处;又向东行70 m,则在原点左边20米处,即在书店。21.【答案】解:有这种可能理由:1.651021.7102 , 1.741021.7102 , 1.7410 21.65102=9(cm)故有可能 【考点】近似数及有效数字 【解析】【分析】由1.651021.7102和1.741021.7102 , 得到174-165的值;这种情况有可能22.【答案】解:对折43次后,这张纸的厚度为0.0062435.281010(cm)=5.28108(m),5.28108m3.85108m,这种说法是可信的 【考点
32、】有理数大小比较 【解析】【分析】由题意可得将一张纸对折43次后纸的厚度=0.006243,比较0.006243和地球到月球的距离约为3.85108的大小即可求解。23.【答案】(1)3;3(2)解:459,2 3,即a= 2,363749,6 7,即b=6,则a+b =4(3)解:根据题意得:x=5,y=3+ 5= 2,xy=7 ,其相反数是 7 【考点】估算无理数的大小 【解析】【解答】解:(1) 的整数部分是3,小数部分是 3;故答案为:3; 3【分析】(1)由34,可得出的整数部分和小数部分。(2)根据23,可得出的整数部分为2,小数部分a=-2,67,可得出整数部分b=6,然后代入求值即可。(3)先求出的整数部分x,再求出y=-x,再求出x-y,然后求出x-y的相反数。
链接地址:https://www.77wenku.com/p-97176.html