二次函数压轴题练习2
《二次函数压轴题练习2》由会员分享,可在线阅读,更多相关《二次函数压轴题练习2(60页珍藏版)》请在七七文库上搜索。
1、二次函数压轴题练习2一解答题(共16小题)1若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=2x2+4x+2与C2:y2=x2+mx+n为“友好抛物线”(1)求抛物线C2的解析式(2)点A是抛物线C2上在第一象限的动点,过A作AQx轴,Q为垂足,求AQ+OQ的最大值(3)设抛物线C2的顶点为C,点B的坐标为(1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90得到线段MB,且点B恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由2如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BHx轴,交
2、x轴于点H(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时CMN的面积3在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上(1)已知a=1,点B的纵坐标为2如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的
3、函数表达式(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PEx轴,交抛物线L于E,F两点,求的值,并直接写出的值4如图,抛物线y=x2+mx+n与直线y=x+3交于A,B两点,交x轴于D,C两点,连接AC,BC,已知A(0,3),C(3,0)()求抛物线的解析式和tanBAC的值;()在()条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQPA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由(2)设E为线段AC上一点(不含端点),连接DE
4、,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?5如图,二次函数y=x2+bx+c的图象交x轴于A(1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒(1)求二次函数的解析式;(2)如图1,当BPQ为直角三角形时,求t的值;(3)如图2,当t2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点
5、?若存在,求出点N的坐标与t的值;若不存在,请说明理由6如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE,设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C,F,D的抛物线为y=ax2+bx+c(1)求点D的坐标(用含m的式子表示);(2)若点G的坐标为(0,3),求该抛物线的解析式;(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使PM=EA?若存在,直接写出点P的坐标;若不存在,说明理由7如图1,一条抛物线与x轴交于A,B两点(点A在点B
6、的左侧),与y轴交于点C,且当x=1和x=3时,y的值相等,直线y=x与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M(1)求这条抛物线的表达式(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒若使BPQ为直角三角形,请求出所有符合条件的t值;求t为何值时,四边形ACQP的面积有最小值,最小值是多少?(3)如图2,当动点P运动到OB的中点时,过点P作PDx轴,交抛物线于点D,连接OD,OM,MD得ODM,将OPD沿x轴
7、向左平移m个单位长度(0m2),将平移后的三角形与ODM重叠部分的面积记为S,求S与m的函数关系式8如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在OBC内(包括OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=3上,PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由9在平面直角坐标系中,抛物线y=x2+(k1)xk与直线y=kx+1交于A,B两点
8、,点A在点B的左侧(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k1)xk(k0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得OQC=90?若存在,请求出此时k的值;若不存在,请说明理由10如图,抛物线y=与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q(1)求点A、点B、点C的坐标;(2)求直线BD的解析式
9、;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(4)在点P的运动过程中,是否存在点Q,使BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由11如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=x2+bx+c交x轴于另一点C,点D是抛物线的顶点(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PGAB于点G求出PFG的周长最大值;(3)在抛物线y=x2+bx+c上是否存在除点D
10、以外的点M,使得ABM与ABD的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由12如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是2(1)求这条直线的函数关系式及点B的坐标(2)在x轴上是否存在点C,使得ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由(3)过线段AB上一点P,作PMx轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?13如图,已知抛物线y=ax2+bx+c(a0,c0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D
11、(1)如图1,已知点A,B,C的坐标分别为(2,0),(8,0),(0,4);求此抛物线的表达式与点D的坐标;若点M为抛物线上的一动点,且位于第四象限,求BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标14如图,已知抛物线y=ax2+bx+c(a0)与x轴交于点A(1,0)和点B(3,0),与y轴交于点C,且OC=OB(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90后,点A的对应点A恰好也落在此抛物线上,
12、求点P的坐标15如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动设PQ交直线AC于点G(1)求直线AC的解析式;(2)设PQC的面积为S,求S关于t的函数解析式;(3)在y轴上找一点M,使MAC和MBC都是等腰三角形直接写出所有满足条件的M点的坐标;(4)过点P作PEAC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由16二次函数y=ax2+bx+c的图象经过点(1,4),且与直线y=x+1相交于A、B两点(如图),A点在y轴上,
13、过点B作BCx轴,垂足为点C(3,0)(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NPx轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标二次函数压轴题练习2参考答案与试题解析一解答题(共16小题)1(2016大庆)若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=2x2+4x+2与C2:y2=x2+mx+n为“友好抛物线”(1)求抛物线C2的解析式(2)点A是抛物线C2上在第一象限的动点,过A作AQx轴,Q为垂足,求AQ+OQ的最大值(3)设抛物线
14、C2的顶点为C,点B的坐标为(1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90得到线段MB,且点B恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由【考点】二次函数综合题菁优网版权所有【分析】(1)先求得y1顶点坐标,然后依据两个抛物线的顶点坐标相同可求得m、n的值;(2)设A(a,a2+2a+3)则OQ=x,AQ=a2+2a+3,然后得到OQ+AQ与a的函数关系式,最后依据配方法可求得OQ+AQ的最值;(3)连接BC,过点B作BDCM,垂足为D接下来证明BCMMDB,由全等三角形的性质得到BC=MD,CM=BD,设点M的坐标为(1,a)则用含a的式子可表示出点
15、B的坐标,将点B的坐标代入抛物线的解析式可求得a的值,从而得到点M的坐标【解答】解:(1)y1=2x2+4x+2=2(x1)2+4,抛物线C1的顶点坐标为(1,4)抛物线C1与C2顶点相同,=1,1+m+n=4解得:m=2,n=3抛物线C2的解析式为y2=x2+2x+3(2)如图1所示:设点A的坐标为(a,a2+2a+3)AQ=a2+2a+3,OQ=a,AQ+OQ=a2+2a+3+a=a2+3a+3=(a)2+当a=时,AQ+OQ有最大值,最大值为(3)如图2所示;连接BC,过点B作BDCM,垂足为DB(1,4),C(1,4),抛物线的对称轴为x=1,BCCM,BC=2BMB=90,BMC+B
16、MD=90BDMC,MBD+BMD=90MBD=BMC在BCM和MDB中,BCMMDBBC=MD,CM=BD设点M的坐标为(1,a)则BD=CM=4a,MD=CB=2点B的坐标为(a3,a2)(a3)2+2(a3)+3=a2整理得:a27a+10=0解得a=2,或a=5当a=2时,M的坐标为(1,2),当a=5时,M的坐标为(1,5)综上所述当点M的坐标为(1,2)或(1,5)时,B恰好落在抛物线C2上【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的顶点坐标公式、二次函数的图象和性质、全等三角形的性质和判定、函数图象上点的坐标与函数解析式的关系,用含a的式子表示点B的坐
17、标是解题的关键2(2016丹东)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BHx轴,交x轴于点H(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时CMN的面积【考点】二次函数综合题菁优网版权所有【分析】(1)利用待定系数法求二次函数的表达式;(2)根据二次函数的对称轴x=2写出点C的坐标为(3,3),根据面积公式求ABC
18、的面积;(3)因为点P是抛物线上一动点,且位于第四象限,设出点P的坐标(m,m2+4m),利用差表示ABP的面积,列式计算求出m的值,写出点P的坐标;(4)分别以点C、M、N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算【解答】解:(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得 解得:,抛物线表达式为:y=x2+4x;(2)点C的坐标为(3,3),又点B的坐标为(1,3),BC=2,SABC=23=3; (3)过P点作PDBH交BH于点D,设点P(m,m2+4m),根据题意,得:BH=AH=3,HD=m24m,PD=m1,SABP
19、=SABH+S四边形HAPDSBPD,6=33+(3+m1)(m24m)(m1)(3+m24m),3m215m=0,m1=0(舍去),m2=5,点P坐标为(5,5) (4)以点C、M、N为顶点的三角形为等腰直角三角形时,分三类情况讨论:以点M为直角顶点且M在x轴上方时,如图2,CM=MN,CMN=90,则CBMMHN,BC=MH=2,BM=HN=32=1,M(1,2),N(2,0),由勾股定理得:MC=,SCMN=;以点M为直角顶点且M在x轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:RtNEM和RtMDC,得RtNEMRtMDC,EM=CD=5,MD=NE=2,由勾股定理得:CM=
20、,SCMN=;以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,MNC=90,作辅助线,同理得:CN=,SCMN=17;以点N为直角顶点且N在y轴右侧时,作辅助线,如图5,同理得:CN=,SCMN=5;以C为直角顶点时,不能构成满足条件的等腰直角三角形;综上所述:CMN的面积为:或或17或5【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数的表达式,考查了等腰直角三角形和全等三角形的判定和性质;本题的一般思路为:根据函数的表达式设出点的坐标,利用面积公式直接表示或求和或求差列式,求出该点的坐标;利用等腰直角三角形的两直角边相等,构建两直角三角形全等,再利用全等性质与点的坐标结合
21、解决问题3(2016金华)在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上(1)已知a=1,点B的纵坐标为2如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PEx轴,交抛物线L于E,F两点,求的值,并直接写出的值【考点】二次函数综合题菁优网版权所有【分析】(1)根据函数解析式求出点A、B的坐标,求出AC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 压轴 练习
链接地址:https://www.77wenku.com/p-98249.html