2018-2019学年江苏省南通市高一(下)调研数学试卷(三)(5月份)含详细解答
《2018-2019学年江苏省南通市高一(下)调研数学试卷(三)(5月份)含详细解答》由会员分享,可在线阅读,更多相关《2018-2019学年江苏省南通市高一(下)调研数学试卷(三)(5月份)含详细解答(21页珍藏版)》请在七七文库上搜索。
1、2018-2019学年江苏省南通市高一(下)调研数学试卷(三)(5月份)一选择题(本大题共12小题,每小题4分,共48分)1(4分)在ABC中,角A、B、C的对边分别是a、b、c,若acosBbcosA,则的最小值为()ABCD2(4分)如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成()A2450B2451C2452D24533(4分)已知等差数列an的前n项和为Sn,a44,S515,则数列的前2018项和为()ABCD4(4分)
2、平面过正方体ABCDA1B1C1D1的顶点A,平面平面A1BD,平面平面ABCDl,则直线l与直线A1C1所成的角为()A30B45C60D905(4分)已知函数yf(x1)的图象关于x1对称,且对yf(x),xR,当x1,x2(,0时,成立,若f(2ax)f(2x2+1)对任意的xR恒成立,则a的范围()ABa1CD6(4分)在ABC中,a、b、c分别为内角A、B、C的对边,若a4,b5,cosA,则B()AB或CD或7(4分)若m,n是两条不同的直线,是两个不同的平面,则下列命题正确的是()A若,m,则mB若m,nm,则nC若m,n,m,n,则D若m,m,n,则mn8(4分)已知f(x)为
3、定义在(,0)(0,+)上的奇函数,当x0时,f(x)x,则f(x)的值域为()A(,22,+)B2,2C(,11,+)D2,+)9(4分)若公比为2的等比数列an的前n项和为Sn,且a2,9,a5成等差数列,则S10()A2451B451C2461D46110(4分)已知圆锥的侧面展开图是一个半径为R,圆心角为的扇形,圆锥内接圆柱的全面积与圆锥的侧面积相等,则圆柱的高为()ARBRCRDR11(4分)在ABC中,acosAbcosB,则三角形的形状为()A直角三角形B等腰三角形或直角三角形C等边三角形D等腰三角形12(4分)直线x1的倾斜角为()A0BCD不存在二填空题(本大题共4小题,每小
4、题5分,共20分)13(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm)等于 ,表面积(单位:cm2)等于 14(5分)已知一个正方体内接于一个球,过球心作一截面,则如图中,截面不可能是 (填序号)15(5分)设l,m,n表示三条不同的直线,表示三个不同的平面,给出下列四个命题:若l,ml,m,则;若m,n是l在内的射影,mn,则ml;若m是平面的一条斜线,点A,l为过点A的一条动直线,则可能有lm且l;若,则其中正确的序号是 16(5分)已知等比数列an的公比q0,若a23,a2+a3+a421,则a3+a4
5、+a5 三解答题(本大题共6小题,共82分)17定义:如果函数yf(x)在定义域内给定区间a,b上存在x0(ax0b),满足,则称函数yf(x)是a,b上的“平均值函数”,x0是它的均值点(1)yx4是否是1,1上的“平均值函数”,如果是请找出它的均值点;如果不是,请说明理由;(2)现有函数y2x2+2mx+1是1,1上的平均值函数,则求实数m的取值范围18在ABC中,内角A,B,C所对的边分别为a,b,c,已知(1)求ABC外接圆的面积S;(2)若sinB2sinA,求ABC的面积19如图,在四棱锥EABCD中,底面ABCD是边长为2的正方形,且DE,平面ABCD平面ADE,二
6、面角ACDE为30()求证:AE平面CDE;()求AB与平面BCE所成角的正弦值20已知数列an是公差不为零的等差数列,a11,且存在实数满足2an+1an+4,nN+(1)求的值及通项an;(2)求数列a的前n项和Sn21如图,ABC的外接圆O的直径为AB,CD平面ABC,BECD(1)求证:平面ADC平面BCDE;(2)试问在线段DE和BC上是否分别存在点M和F,使得平面OMF平面ACD?若存在,确定点M和点F的位置;若不存在,请说明理由22在平面直角坐标系下,已知A(1,0),B(2,0),动点M满足,记动点M的轨迹为C()求曲线C的方程;()若定点P(0,a)(a0),线段|MP|的最
7、大值为,过点P作曲线C的切线l,求l的方程2018-2019学年江苏省南通市高一(下)调研数学试卷(三)(5月份)参考答案与试题解析一选择题(本大题共12小题,每小题4分,共48分)1(4分)在ABC中,角A、B、C的对边分别是a、b、c,若acosBbcosA,则的最小值为()ABCD【分析】由题意利用正弦定理化简已知等式,利用同角三角函数间基本关系可求tanA3tanB,进而利用正弦定理,基本不等式化简所求即可求解【解答】解:acosBbcosA,由正弦定理化简得:sinAcosBsinBcosAsinCsin(A+B)sinAcosB+cosAsinB,整理得:sinAcosB3cosA
8、sinB,cosAcosB0,tanA3tanB;则+222可得的最小值为故选:D【点评】本题主要考查了正弦定理,同角三角函数间基本关系,基本不等式在解三角形中的综合应用,考查了转化思想,属于中档题2(4分)如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成()A2450B2451C2452D2453【分析】由图分析第n个图案由n个分支组成,每个分支上点的个数相同,因此第n个图案上点的个数分支个数n分支上的点(n1)+中间1个点,可得其
9、规律,进而得到第50个图形由多少个点组成【解答】解:设第(n)个图案由an个点组成,由图可知,第(n)个图案由n个分支组成,每个分支有中间1个点和分支上的(n1)个点组成所以an1+n(n1),所以a501+50492451,故选:B【点评】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)3(4分)已知等差数列an的前n项和为Sn,a44,S515,则数列的前2018项和为()ABCD【分析】设等差数列的公差为d,由等差数列的通项公式和求和公式,解方程可得首项和公差,可得数列的通项公式,求得,运用裂项相消求和,即可得到所
10、求和【解答】解:等差数列an的前n项和为Sn,公差设为d,a44,S515,可得a1+3d4,5a1+1015,解得a11,d1,即ann,则数列的前2018项和为1+1故选:A【点评】本题考查等差数列的通项公式和求和公式,数列的裂项相消求和,考查方程思想和运算能力,属于基础题4(4分)平面过正方体ABCDA1B1C1D1的顶点A,平面平面A1BD,平面平面ABCDl,则直线l与直线A1C1所成的角为()A30B45C60D90【分析】平面过正方体ABCDA1B1C1D1的顶点A,平面平面A1BD,推导出BDAF,从而直线l与直线A1C1所成的角即为直线BD与直线AC所成的角,由此能求出结果【
11、解答】解:如图所示,平面过正方体ABCDA1B1C1D1的顶点A,平面平面A1BD,平面平面ABCDlAF,平面A1BD平面ABCDBD,BDAF,又A1C1AC,则直线l与直线A1C1所成的角即为直线BD与直线AC所成的角,为90故选:D【点评】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是基础题5(4分)已知函数yf(x1)的图象关于x1对称,且对yf(x),xR,当x1,x2(,0时,成立,若f(2ax)f(2x2+1)对任意的xR恒成立,则a的范围()ABa1CD【分析】根据条件判断函数f(x)的奇偶性和单调性,结
12、合函数单调性和奇偶性的性质将不等式进行转化,利用参数分离法结合基本不等式的性质进行转化求解即可【解答】解:yf(x1)的图象关于x1对称,yf(x)的图象关于x0对称,即f(x)是偶函数,当x1,x2(,0时,成立,此时f(x)为减函数,则在0,+)上f(x)为增函数,若f(2ax)f(2x2+1)对任意的xR恒成立,等价为若f(|2ax|)f(2x2+1)对任意的xR恒成立,即|2ax|2x2+1,当x0时,不等式成立,当x0时,不等式等价为2|a|2|x|+,当x0时,2|x|+22,当且仅当2|x|时取等号,则2|a|2,即|a|,得a,故选:A【点评】本题主要考查不等式恒成立,利用函数
13、奇偶性和单调性的性质,利用参数分离法以及基本不等式的性质进行转化是解决本题的关键6(4分)在ABC中,a、b、c分别为内角A、B、C的对边,若a4,b5,cosA,则B()AB或CD或【分析】根据题意,有cosA的值求出sinA的值,结合正弦定理可得sinB,计算可得sinB的值,比较a、b的大小,分析可得答案【解答】解:根据题意,在ABC中,cosA,则sinA,且A为锐角;又由,可得sinB,又由a4b5,则BA,则B;故选:A【点评】本题考查三角形中正弦定理的应用,关键是掌握正弦定理的形式,属于基础题7(4分)若m,n是两条不同的直线,是两个不同的平面,则下列命题正确的是()A若,m,则
14、mB若m,nm,则nC若m,n,m,n,则D若m,m,n,则mn【分析】根据空间线面位置关系的判定或定义进行判断【解答】解:若,m,则m与可能平行也可能相交,故A错误;若m,nm,则n或n或n与相交,故B错误;若m,n,m,n,则或与相交,故C错误;若m,m,n,则mn,故D正确故选:D【点评】本题考查了空间线面位置关系的判断与性质,属于中档题8(4分)已知f(x)为定义在(,0)(0,+)上的奇函数,当x0时,f(x)x,则f(x)的值域为()A(,22,+)B2,2C(,11,+)D2,+)【分析】根据题意,由函数在x0时的解析式,结合基本不等式的性质分析可得f(x)2,结合函数的奇偶性分
15、析可得答案【解答】解:根据题意,当x0时,f(x)x,则f(x)x+22,又由函数f(x)为定义在(,0)(0,+)上的奇函数,则当x0时,有f(x)2,则函数的值域为(,22,+);故选:A【点评】本题考查函数的奇偶性的性质以及应用、函数的值域计算,涉及基本不等式的应用,属于基础题9(4分)若公比为2的等比数列an的前n项和为Sn,且a2,9,a5成等差数列,则S10()A2451B451C2461D461【分析】运用等比数列的通项公式和等差数列的中项性质,解方程可得首项,再由等比数列的求和公式,计算可得所求和【解答】解:公比q为2的等比数列an的前n项和为Sn,且a2,9,a5成等差数列,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 江苏省 南通市 调研 数学试卷 月份 详细 解答
链接地址:https://www.77wenku.com/p-98283.html