2018-2019学年江苏省南通市如皋市高一(上)期末数学试卷(含详细解答)
《2018-2019学年江苏省南通市如皋市高一(上)期末数学试卷(含详细解答)》由会员分享,可在线阅读,更多相关《2018-2019学年江苏省南通市如皋市高一(上)期末数学试卷(含详细解答)(20页珍藏版)》请在七七文库上搜索。
1、2018-2019学年江苏省南通市如皋市高一(上)期末数学试卷一、选择题:(本大题共12小题每小题4分,共48分)1(4分)已知全集U1,2,3,4,集合A1,4,B2,4,则A(UB)()A2B4C1D1,2,42(4分)若幂函数f(x)的图象经过点(3,),则f(4)()A16B2C2D23(4分)函数f(x)lg(x+1)+的定义域为()A(,3B(1,3C0,3D(1,3)4(4分)已知弧长为cm的弧所对的圆心角为,则这条弧所在的扇形面积为()cm2AB4C2D5(4分)已知向量(4,2),(3,1),则向量与的夹角为()ABC或D6(4分)如图是函数f(x)Asin(x+)(A0,0
2、,|)在一个周期内的图象,则其解析式是()Af(x)3sin(x+)Bf(x)3sin(2x+)Cf(x)3sin(2x)Df(x)3sin(2x+)7(4分)若tan2,则2sin23sincos()A10BC2D8(4分)已知向量,满足|2,则|2+|()A2B2C2D29(4分)已知函数f(x),则yff(x)3的零点为()A0和3B2C3D110(4分)在平面直角坐标系xOy中,点A,B在单位圆上,且点A在第一象限,横坐标是,将点A绕原点O顺时针旋转到B点,则点B的横坐标为()ABCD11(4分)已知函数f(x)exex,则不等式f(2x21)+f(x)0的解集为()A(0,1BC1,
3、D1,12(4分)已知定义在(,0)(0,+)上的函数f(x),若f(x)+f(x)0在定义域上有两个不同的解,则a的取值范围为()A(,)B()C(,)()D()二、填空题(本大题共4小题每小题5分,共20分)13(5分)计算:()lglg 14(5分)已知sin(+),则sin(2) 15(5分)三角形ABC中,已知AC4,AB2,3,4,则 16(5分)已知函数f(x)x+,其中aR,若关于x的方程f(|2x1|)2a+有三个不同的实数解,则实数a的取值范围是 三、解答题(本大题共6小题,共82分)17(10分)设全集UR,集合Ax
4、|1xm5,Bx|2x4(1)当m1时,求A(UB);(2)若AB,求实数m的取值范围18(12分)已知,均为锐角(1)求sin2的值;(2)求sin的值19(14分)已知向量(+sinx,4sinx),(cosx+sinx,cosx),设 f(x)(1)将f(x)的图象向右平移个单位,然后纵坐标不变,横坐标变为原来的2倍得到gx)的图象,求g(x)的单调增区间;(2)若x0,时,mf(x)+mf(x)+2恒成立,求实数m的取值范围20(14分)在三角形ABC中,AB2,AC1,ACB,D是线段BC上一点,且,F为线段AB上一点(1)设,设x+y,求xy;(2)求的取值范围;(3)若F为线段A
5、B的中点,直线CF与AD相交于点M,求21(16分)如图,某城市拟在矩形区域ABCD内修建儿童乐园,已知AB2百米,BC4百米,点E,N分别在AD,BC上,梯形DENC为水上乐园;将梯形EABN分成三个活动区域,M在AB上,且点B,E关于MN对称,现需要修建两道栅栏ME,MN将三个活动区域隔开设BNM,两道栅栏的总长度L ()ME+MN(1)求L ()的函数表达式,并求出函数的定义域;(2)求L()的最小值及此时的值22(16分)若函数f(x)x|xm|+m2,mR(1)若函数f(x)为奇函数,求m的值;(2)若函数f(x)在x1,2上是增函数,求实数m的取值范围;(3)若函数f(x)在x1,
6、2上的最小值为7,求实数m的值2018-2019学年江苏省南通市如皋市高一(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共12小题每小题4分,共48分)1(4分)已知全集U1,2,3,4,集合A1,4,B2,4,则A(UB)()A2B4C1D1,2,4【分析】先求出UB,再求出A(UB)【解答】解:全集U1,2,3,4,B2,4,UB1,3,A1,4,A(UB)1,41,31故选:C【点评】本题考查集合的基本的混合运算,属于简单题2(4分)若幂函数f(x)的图象经过点(3,),则f(4)()A16B2C2D2【分析】根据幂函数的定义利用待定系数法求出f(x)的解析式,再计算f(4)的
7、值【解答】解:设幂函数yf(x)xa,xR,函数图象过点(3,),则3a,a,幂函数f(x),f(4)2故选:D【点评】本题考查了幂函数的定义与应用问题,是基础题3(4分)函数f(x)lg(x+1)+的定义域为()A(,3B(1,3C0,3D(1,3)【分析】根据对数函数的性质以及二次根式的性质求出函数的定义域即可【解答】解:由题意得:,解得:1x3,故函数的定义域是(1,3,故选:B【点评】本题考查了求函数的定义域问题,考查对数函数的性质以及二次根式的性质,是一道基础题4(4分)已知弧长为cm的弧所对的圆心角为,则这条弧所在的扇形面积为()cm2AB4C2D【分析】根据弧长公式求出对应的半径
8、,然后根据扇形的面积公式求面积即可【解答】解:弧长为cm的弧所对的圆心角为,半径r4,这条弧所在的扇形面积为S2cm2故选:C【点评】本题主要考查扇形的面积公式和弧长公式,要求熟练掌握相应的公式,比较基础5(4分)已知向量(4,2),(3,1),则向量与的夹角为()ABC或D【分析】运用向量的夹角公式可解决此问题【解答】解:根据题意得,12210cos,向量与的夹角为故选:A【点评】本题考查向量的夹角公式的应用6(4分)如图是函数f(x)Asin(x+)(A0,0,|)在一个周期内的图象,则其解析式是()Af(x)3sin(x+)Bf(x)3sin(2x+)Cf(x)3sin(2x)Df(x)
9、3sin(2x+)【分析】根据图象求出周期和振幅,利用五点对应法求出的值即可得到结论【解答】解:由图象知A3,函数的周期T(),即,即2,则f(x)3sin(2x+),由五点对应法得2()+0,即,则f(x)3sin(2x+),故选:B【点评】本题主要考查三角函数解析式的求解,根据条件确定A,和的值是解决本题的关键7(4分)若tan2,则2sin23sincos()A10BC2D【分析】题目已知条件是正切值,而要求的三角函数式是包含正弦和余弦的,因此要弦化切,给要求的式子加上一个为1的分母,把1变为正弦和余弦的平方和,这样式子就变为分子和分母同次的因式,分子和分母同除以余弦的平方,得到结果【解
10、答】解:sin2+cos21,2sin23sincos,故选:D【点评】已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值在求值中,确定角的终边位置是关键和必要的有时,由于角的终边位置的不确定,因此解的情况不止一种8(4分)已知向量,满足|2,则|2+|()A2B2C2D2【分析】根据条件,对两边平方即可求出,从而可求出的值,进而得出的值【解答】解:;故选:C【点评】考查向量数量积的运算,求向量长度的方法9(4分)已知函数f(x),则yff(x)3的零点为()A0和3B2C3D1【分析】由复合方程的解法及分段函数的有关问题分段讨论有:设tf(x),解方程f(t)30得:或,得:
11、t1,再分段解方程或,得解【解答】解:设tf(x),解方程f(t)30得:或,解得:t1,即f(x)1,即或,解得:x3,故选:C【点评】本题考查了复合方程的解法及分段函数的有关问题,属中档题10(4分)在平面直角坐标系xOy中,点A,B在单位圆上,且点A在第一象限,横坐标是,将点A绕原点O顺时针旋转到B点,则点B的横坐标为()ABCD【分析】设射线OA对应的角为,利用任意角的三角函数的定义求得cos、sin,再利用两角差的余弦公式求得点B的横坐标为cos()的值【解答】解:点A,B在单位圆上,且点A在第一象限,设射线OA对应的角为,横坐标是cos,故点A的纵坐标为sin,将点A绕原点O顺时针
12、旋转到B点,则OB射线对应的终边对应的角为,则点B的横坐标为cos()coscos+sinsincos+sin,故选:B【点评】本题主要考查任意角的三角函数的定义,两角差的余弦公式的应用,属于基础题11(4分)已知函数f(x)exex,则不等式f(2x21)+f(x)0的解集为()A(0,1BC1,D1,【分析】根据条件判断函数f(x)的奇偶性和单调性,利用函数奇偶性和单调性的性质将不等式进行转化求解即可【解答】解:f(x)exex,f(x)exex(exex)f(x),则函数f(x)是奇函数,yex是增函数,yex,是减函数,则f(x)exex,是增函数,则不等式f(2x21)+f(x)0得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 江苏省 南通市 如皋市 期末 数学试卷 详细 解答
链接地址:https://www.77wenku.com/p-98293.html