高中数学专题03 导数及其应用选择填空题(1)含答案
《高中数学专题03 导数及其应用选择填空题(1)含答案》由会员分享,可在线阅读,更多相关《高中数学专题03 导数及其应用选择填空题(1)含答案(32页珍藏版)》请在七七文库上搜索。
1、高中数学专题03导数及其应用选择填空题考纲解读三年高考分析1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y=C(C为常数),y=x,y=x2,y=的导数.(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.常见基本初等函数的导数公式:(C)=0(C为常数);(xn)=nxn-1,nN;(sinx)=cosx;(cosx)=-sinx;(ex)=ex;(ax)=axlna(a0,且a1);(lnx)=;(logax)=logae(
2、a0,且a1)常用的导数运算法则:法则1:u(x)v(x)=u(x)v(x).法则2:u(x)v(x)=u(x)v(x)+u(x)v(x).法则3:3.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题会利用导数解决某些实际问题.5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积
3、分的概念.(2)了解微积分基本定理的含义.导数的运算法则和导数的具体应用 是考查的重点,解题时常用到导函数的求解、分类讨论的数学思想、等价转化的数学思想等,考查学生的数学抽象能力、逻辑推理能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,较大难度.考查函数的单调性、极值、最值,利用函数的性质求参数范围;与方程、不等式等知识相结合命题,强化函数与方程思想、转化与化归思想、分类讨论思想的应用意识;题型以解答题为主,一般难度较大.1【2019年新课标3理科06】已知曲线yaex+xlnx在点(1,ae)处的切线方程为y2x+b,则()Aae,b1Bae,b1Cae1,b1Dae1,b1
4、【解答】解:yaex+xlnx的导数为yaex+lnx+1,由在点(1,ae)处的切线方程为y2x+b,可得ae+1+02,解得ae1,又切点为(1,1),可得12+b,即b1,故选:D2【2019年新课标3理科07】函数y在6,6的图象大致为()ABC D【解答】解:由yf(x)在6,6,知f(x),f(x)是6,6上的奇函数,因此排除C又f(4),因此排除A,D故选:B3【2019年新课标1理科05】函数f(x)在,的图象大致为()ABCD【解答】解:f(x),x,f(x)f(x),f(x)为,上的奇函数,因此排除A;又f(),因此排除B,C;故选:D4【2018年新课标1理科05】设函数
5、f(x)x3+(a1)x2+ax若f(x)为奇函数,则曲线yf(x)在点(0,0)处的切线方程为()Ay2xByxCy2xDyx【解答】解:函数f(x)x3+(a1)x2+ax,若f(x)为奇函数,可得a1,所以函数f(x)x3+x,可得f(x)3x2+1,曲线yf(x)在点(0,0)处的切线的斜率为:1,则曲线yf(x)在点(0,0)处的切线方程为:yx故选:D5【2018年新课标2理科03】函数f(x)的图象大致为()ABCD【解答】解:函数f(x)f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x1时,f(1)e0,排除D当x+时,f(x)+,排除C,故选:B6【2018年
6、新课标3理科07】函数yx4+x2+2的图象大致为()ABCD【解答】解:函数过定点(0,2),排除A,B函数的导数f(x)4x3+2x2x(2x21),由f(x)0得2x(2x21)0,得x或0x,此时函数单调递增,由f(x)0得2x(2x21)0,得x或x0,此时函数单调递减,排除C,也可以利用f(1)1+1+220,排除A,B,故选:D7【2018年浙江05】函数y2|x|sin2x的图象可能是()ABCD【解答】解:根据函数的解析式y2|x|sin2x,得到:函数的图象为奇函数,故排除A和B当x时,函数的值也为0,故排除C故选:D8【2017年新课标2理科11】若x2是函数f(x)(x
7、2+ax1)ex1的极值点,则f(x)的极小值为()A1B2e3C5e3D1【解答】解:函数f(x)(x2+ax1)ex1,可得f(x)(2x+a)ex1+(x2+ax1)ex1,x2是函数f(x)(x2+ax1)ex1的极值点,可得:f(2)(4+a)e3+(42a1)e30,即4+a+(32a)0解得a1可得f(x)(2x1)ex1+(x2x1)ex1,(x2+x2)ex1,函数的极值点为:x2,x1,当x2或x1时,f(x)0函数是增函数,x(2,1)时,函数是减函数,x1时,函数取得极小值:f(1)(1211)e111故选:A9【2017年新课标3理科11】已知函数f(x)x22x+a
8、(ex1+ex+1)有唯一零点,则a()ABCD1【解答】解:因为f(x)x22x+a(ex1+ex+1)1+(x1)2+a(ex1)0,所以函数f(x)有唯一零点等价于方程1(x1)2a(ex1)有唯一解,等价于函数y1(x1)2的图象与ya(ex1)的图象只有一个交点当a0时,f(x)x22x1,此时有两个零点,矛盾;当a0时,由于y1(x1)2在(,1)上递增、在(1,+)上递减,且ya(ex1)在(,1)上递增、在(1,+)上递减,所以函数y1(x1)2的图象的最高点为A(1,1),ya(ex1)的图象的最高点为B(1,2a),由于2a01,此时函数y1(x1)2的图象与ya(ex1)
9、的图象有两个交点,矛盾;当a0时,由于y1(x1)2在(,1)上递增、在(1,+)上递减,且ya(ex1)在(,1)上递减、在(1,+)上递增,所以函数y1(x1)2的图象的最高点为A(1,1),ya(ex1)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a1,即a,符合条件;综上所述,a,故选:C10【2017年浙江07】函数yf(x)的导函数yf(x)的图象如图所示,则函数yf(x)的图象可能是()ABCD【解答】解:由当f(x)0时,函数f(x)单调递减,当f(x)0时,函数f(x)单调递增,则由导函数yf(x)的图象可知:f(x)先单调递减,再单调递增,然后单调
10、递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D11【2019年新课标1理科13】曲线y3(x2+x)ex在点(0,0)处的切线方程为【解答】解:y3(x2+x)ex,y3ex(x2+3x+1),当x0时,y3,y3(x2+x)ex在点(0,0)处的切线斜率k3,切线方程为:y3x故答案为:y3x12【2019年北京理科13】设函数f(x)ex+aex(a为常数)若f(x)为奇函数,则a;若f(x)是R上的增函数,则a的取值范围是【解答】解:根据题意,函数f(x)ex+aex,若f(x)为奇函数,则f(x)f(x),即ex+aex(ex+aex)
11、,变形可得a1,函数f(x)ex+aex,导数f(x)exaex若f(x)是R上的增函数,则f(x)的导数f(x)exaex0在R上恒成立,变形可得:ae2x恒成立,分析可得a0,即a的取值范围为(,0;故答案为:1,(,013【2019年江苏10】在平面直角坐标系xOy中,P是曲线yx(x0)上的一个动点,则点P到直线x+y0的距离的最小值是【解答】解:由yx(x0),得y1,设斜率为1的直线与曲线yx(x0)切于(x0,),由,解得(x00)曲线yx(x0)上,点P()到直线x+y0的距离最小,最小值为故答案为:414【2019年江苏11】在平面直角坐标系xOy中,点A在曲线ylnx上,且
12、该曲线在点A处的切线经过点(e,1)(e为自然对数的底数),则点A的坐标是【解答】解:设A(x0,lnx0),由ylnx,得y,则该曲线在点A处的切线方程为ylnx0,切线经过点(e,1),即,则x0eA点坐标为(e,1)故答案为:(e,1)15【2019年浙江16】已知aR,函数f(x)ax3x若存在tR,使得|f(t+2)f(t)|,则实数a的最大值是【解答】解:存在tR,使得|f(t+2)f(t)|,即有|a(t+2)3(t+2)at3+t|,化为|2a(3t2+6t+4)2|,可得2a(3t2+6t+4)2,即a(3t2+6t+4),由3t2+6t+43(t+1)2+11,可得0a,可
13、得a的最大值为故答案为:16【2018年江苏11】若函数f(x)2x3ax2+1(aR)在(0,+)内有且只有一个零点,则f(x)在1,1上的最大值与最小值的和为【解答】解:函数f(x)2x3ax2+1(aR)在(0,+)内有且只有一个零点,f(x)2x(3xa),x(0,+),当a0时,f(x)2x(3xa)0,函数f(x)在(0,+)上单调递增,f(0)1,f(x)在(0,+)上没有零点,舍去;当a0时,f(x)2x(3xa)0的解为x,f(x)在(0,)上递减,在(,+)递增,又f(x)只有一个零点,f()10,解得a3,f(x)2x33x2+1,f(x)6x(x1),x1,1,f(x)
14、0的解集为(1,0),f(x)在(1,0)上递增,在(0,1)上递减,f(1)4,f(0)1,f(1)0,f(x)minf(1)4,f(x)maxf(0)1,f(x)在1,1上的最大值与最小值的和为:f(x)max+f(x)min4+1317【2018年新课标2理科13】曲线y2ln(x+1)在点(0,0)处的切线方程为【解答】解:y2ln(x+1),y,当x0时,y2,曲线y2ln(x+1)在点(0,0)处的切线方程为y2x故答案为:y2x18【2018年新课标3理科14】曲线y(ax+1)ex在点(0,1)处的切线的斜率为2,则a【解答】解:曲线y(ax+1)ex,可得yaex+(ax+1
15、)ex,曲线y(ax+1)ex在点(0,1)处的切线的斜率为2,可得:a+12,解得a3故答案为:319【2017年江苏11】已知函数f(x)x32x+ex,其中e是自然对数的底数若f(a1)+f(2a2)0则实数a的取值范围是【解答】解:函数f(x)x32x+ex的导数为:f(x)3x22+ex2+20,可得f(x)在R上递增;又f(x)+f(x)(x)3+2x+exex+x32x+ex0,可得f(x)为奇函数,则f(a1)+f(2a2)0,即有f(2a2)f(a1)由f(a1)f(a1),f(2a2)f(1a),即有2a21a,解得1a,故答案为:1,1【江西省鹰潭市2019届高三第一次模
16、拟】曲线在点处的切线的倾斜角为()ABCD【答案】D【解析】解:可得, 设切线的倾斜角为, 可得 故选D2【山东省聊城市2019届高三三模】函数的图象在处的切线方程为( )ABCD【答案】A【解析】当x=1时,f(1)=-2+0=-2,所以切点为(1,-2),由题得,所以切线方程为y+2=-1(x-1),即:故选:A3【辽宁省丹东市2019届高三总复习质量测试】若是函数的极值点,则的值为( )A-2B3C-2或3D-3或2【答案】B【解析】,由题意可知,或当时,当时,函数单调递增;当时,函数单调递减,显然是函数的极值点;当时,所以函数是上的单调递增函数,没有极值,不符合题意,舍去,故本题选B.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学专题03 导数及其应用选择填空题1含答案 高中数学 专题 03 导数 及其 应用 选择 填空 答案
链接地址:https://www.77wenku.com/p-98735.html